TY - JOUR
T1 - Dissimilatory Nitrate/Nitrite Reduction Processes in River Sediments Across Climatic Gradient: Influences of Biogeochemical Controls and Climatic Temperature Regime
AU - Li, Xiaofei
AU - Sardans, Jordi
AU - Hou, Lijun
AU - Gao, Dengzhou
AU - Liu, Min
AU - Peñuelas, Josep
PY - 2019/1/1
Y1 - 2019/1/1
N2 - ©2019. American Geophysical Union. All Rights Reserved. Dissimilatory nitrate/nitrite reduction processes play an important role in controlling nitrogen loading in river environments. However, the relative importance of climatic temperature regime and biogeochemical controls to dissimilatory nitrate/nitrite reduction processes remains unclear. We used nitrogen isotope tracer approach to investigate geographical variabilities of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) in river sediments from temperate to tropical climates of China. Denitrification, anammox, and DNRA varied greatly across the climatic gradient, with potential rates of 1.47–25.7, 0.54–3.4, and 0.15–7.17 nmol N g−1 h−1, respectively. Mean measured rates throughout the sampling sites were 9.73 nmol N g−1 h−1 for denitrification, 1.29 nmol N g−1 h−1 for anammox, and 1.61 nmol N g−1 h−1 for DNRA. Denitrification and DNRA rates increased significantly from temperate to tropical climates, while no significantly spatial difference was observed for anammox rates along the climatic gradient. Mean annual temperature, total organic carbon, dissolved organic carbon, pH, NH4+, NO3–, C/N, Fe2+, and functional genes were the crucial factors affecting denitrification, anammox, and DNRA. High dissolved organic carbon and NO3– availability determined nitrogen removal capacity in river sediments. Mean annual temperature was the most important factor explaining the geographical variances of denitrification and DNRA, while the critical predictor of anammox variance was sediment pH along the climatic gradient. Our results highlight that biogeochemical controls and climatic temperature regime are important coregulators affecting the geographical variabilities of dissimilatory nitrate/nitrite reduction processes in river sediments at the continental-scale variation.
AB - ©2019. American Geophysical Union. All Rights Reserved. Dissimilatory nitrate/nitrite reduction processes play an important role in controlling nitrogen loading in river environments. However, the relative importance of climatic temperature regime and biogeochemical controls to dissimilatory nitrate/nitrite reduction processes remains unclear. We used nitrogen isotope tracer approach to investigate geographical variabilities of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) in river sediments from temperate to tropical climates of China. Denitrification, anammox, and DNRA varied greatly across the climatic gradient, with potential rates of 1.47–25.7, 0.54–3.4, and 0.15–7.17 nmol N g−1 h−1, respectively. Mean measured rates throughout the sampling sites were 9.73 nmol N g−1 h−1 for denitrification, 1.29 nmol N g−1 h−1 for anammox, and 1.61 nmol N g−1 h−1 for DNRA. Denitrification and DNRA rates increased significantly from temperate to tropical climates, while no significantly spatial difference was observed for anammox rates along the climatic gradient. Mean annual temperature, total organic carbon, dissolved organic carbon, pH, NH4+, NO3–, C/N, Fe2+, and functional genes were the crucial factors affecting denitrification, anammox, and DNRA. High dissolved organic carbon and NO3– availability determined nitrogen removal capacity in river sediments. Mean annual temperature was the most important factor explaining the geographical variances of denitrification and DNRA, while the critical predictor of anammox variance was sediment pH along the climatic gradient. Our results highlight that biogeochemical controls and climatic temperature regime are important coregulators affecting the geographical variabilities of dissimilatory nitrate/nitrite reduction processes in river sediments at the continental-scale variation.
KW - biogeochemical controls
KW - climatic gradient
KW - geographical variability
KW - nitrate/nitrite reduction
U2 - 10.1029/2019JG005045
DO - 10.1029/2019JG005045
M3 - Article
SN - 2169-8953
VL - 124
SP - 2305
EP - 2320
JO - Journal of Geophysical Research G: Biogeosciences
JF - Journal of Geophysical Research G: Biogeosciences
ER -