Disruption of cortical cell type composition and function underlies diabetes-associated cognitive decline

Montserrat Solé Piñol, Joan Xavier Comella i Carnicé, Rafael Simó Canonge, Karis Little, Aditi Singh, Angel Del Marco, María Llorián-Salvador, Maria Vargas-Soria, Mireia Turch-Anguera, Noëlle Bakker, Sarah Scullion, Ingeborg Klaassen, Monica Garcia-Alloza, Vijay K. Tiwari, Alan W. Stitt

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Type 2 diabetes is associated with increased risk of cognitive decline although the pathogenic basis for this remains obscure. Deciphering diabetes-linked molecular mechanisms in cells of the cerebral cortex could uncover novel therapeutic targets. Single-cell transcriptomic sequencing (scRNA-seq) was conducted on the cerebral cortex in a mouse model of type 2 diabetes (db/db mice) and in non-diabetic control mice in order to identify gene expression changes in distinct cell subpopulations and alterations in cell type composition. Immunohistochemistry and metabolic assessment were used to validate the findings from scRNA-seq and to investigate whether these cell-specific dysfunctions impact the neurovascular unit (NVU). Furthermore, the behavioural and cognitive alterations related to these dysfunctions in db/db mice were assessed via Morris water maze and novel object discrimination tests. Finally, results were validated in post-mortem sections and protein isolates from individuals with type 2 diabetes. Compared with non-diabetic control mice, the db/db mice demonstrated disrupted brain function as revealed by losses in episodic and spatial memory and this occurred concomitantly with dysfunctional NVU, neuronal circuitry and cerebral atrophy. scRNA-seq of db / db mouse cerebral cortex revealed cell population changes in neurons, glia and microglia linked to functional regulatory disruption including neuronal maturation and altered metabolism. These changes were validated through immunohistochemistry and protein expression analysis not just in the db/db mouse cerebral cortex but also in post-mortem sections and protein isolates from individuals with type 2 diabetes (74.3 ± 5.5 years) compared with non-diabetic control individuals (87.0 ± 8.5 years). Furthermore, metabolic and synaptic gene disruptions were evident in cortical NVU cell populations and associated with a decrease in vascular density. Taken together, our data reveal disruption in the cellular and molecular architecture of the cerebral cortex induced by diabetes, which can explain, at least in part, the basis for progressive cognitive decline in individuals with type 2 diabetes. The single-cell sequencing data that supports this study are available at GEO accession GSE217665 (). The online version contains peer-reviewed but unedited supplementary material available at 10.1007/s00125-023-05935-2.
Original languageEnglish
Pages (from-to)1557-1575
Number of pages19
JournalDiabetologia
Volume66
DOIs
Publication statusPublished - Aug 2023

Keywords

  • Cognitive decline
  • Cortex
  • Diabetes
  • Metabolism
  • Neuroscience
  • Neurovascular unit

Fingerprint

Dive into the research topics of 'Disruption of cortical cell type composition and function underlies diabetes-associated cognitive decline'. Together they form a unique fingerprint.

Cite this