Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators

Paris Velez, Jordi Naqui, A. Fernandez-Prieto, Miguel Duran-Sindreu, Jordi Bonache, Jesús Martel, Francisco Medina, Ferran Martin

Research output: Contribution to journalArticleResearchpeer-review

51 Citations (Scopus)

Abstract

Differential (balanced) microstrip bandpass filters (BPFs) implemented by combining open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs) are proposed. The OSRRs are series connected in both strips of the differential line, whereas the OCSRRs are paired face-to-face and connected between both line strips in a symmetric configuration. For the differential mode, the OCSRRs are virtually connected to ground and the structure can be modeled, to a first-order approximation, by a cascade of series resonators (OSRRs) alternating with shunt resonators (OCSRRs), i.e., the canonical circuit model of a BPF. These filters have the ability to suppress the common mode by properly adjusting the metallic area surrounding the OCSRRs. An order-3 balanced Chebyshev BPF is designed and fabricated to illustrate the possibilities of the approach. The filter does not require vias (contrary to previous single-ended microstrip BPFs based on OSRRs and OCSRRs), filter dimensions are small, and the common mode is efficiently suppressed with more than 20 dB rejection within the differential filter pass band. © 2001-2012 IEEE.
Original languageEnglish
Article number6400267
Pages (from-to)22-24
JournalIEEE Microwave and Wireless Components Letters
Volume23
DOIs
Publication statusPublished - 7 Jan 2013

Keywords

  • Bandpass filter (BPF)
  • differential filter
  • microstrip
  • split ring resonators (SRRs)

Fingerprint Dive into the research topics of 'Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators'. Together they form a unique fingerprint.

Cite this