TY - JOUR
T1 - Development of a low-cost robotized 3D-prototype for automated optical microscopy diagnosis :
T2 - an open-source system
AU - Dantas de Oliveira, Allisson
AU - Rubio Maturana, Carles
AU - Zarzuela Serrat, Francesc
AU - Carvalho, Bruno Motta de
AU - Sulleiro Igual, Elena
AU - Prats, Clara
AU - Veiga, Anna
AU - Bosch, Mercedes
AU - Zulueta, Javier
AU - Abelló, Alberto
AU - Sayrol, E.
AU - Joseph-Munné, Joan
AU - López i Codina, Daniel
N1 - Publisher Copyright:
© 2024 Public Library of Science. All rights reserved.
PY - 2024/6/21
Y1 - 2024/6/21
N2 - In a clinical context, conventional optical microscopy is commonly used for the visualization of biological samples for diagnosis. However, the availability of molecular techniques and rapid diagnostic tests are reducing the use of conventional microscopy, and consequently the number of experienced professionals starts to decrease. Moreover, the continuous visualization during long periods of time through an optical microscope could affect the final diagnosis results due to induced human errors and fatigue. Therefore, microscopy automation is a challenge to be achieved and address this problem. The aim of the study is to develop a low-cost automated system for the visualization of microbiological/parasitological samples by using a conventional optical microscope, and specially designed for its implementation in resource-poor settings laboratories. A 3D-prototype to automate the majority of conventional optical microscopes was designed. Pieces were built with 3D-printing technology and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing softwares. The system's components were divided into three subgroups: microscope stage pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-focus (Z) movements of the microscope. An average time of 27.00 ± 2.58 seconds is required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average maximum Laplacian value of 11.83 with tested images. The whole automation process is controlled by a smartphone device, which is responsible for acquiring images for further diagnosis via convolutional neural networks. The prototype is specially designed for resource-poor settings, where microscopy diagnosis is still a routine process. The coalescence between convolutional neural network predictive models and the automation of the movements of a conventional optical microscope confer the system a wide range of image-based diagnosis applications. The accessibility of the system could help improve diagnostics and provide new tools to laboratories worldwide.
AB - In a clinical context, conventional optical microscopy is commonly used for the visualization of biological samples for diagnosis. However, the availability of molecular techniques and rapid diagnostic tests are reducing the use of conventional microscopy, and consequently the number of experienced professionals starts to decrease. Moreover, the continuous visualization during long periods of time through an optical microscope could affect the final diagnosis results due to induced human errors and fatigue. Therefore, microscopy automation is a challenge to be achieved and address this problem. The aim of the study is to develop a low-cost automated system for the visualization of microbiological/parasitological samples by using a conventional optical microscope, and specially designed for its implementation in resource-poor settings laboratories. A 3D-prototype to automate the majority of conventional optical microscopes was designed. Pieces were built with 3D-printing technology and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing softwares. The system's components were divided into three subgroups: microscope stage pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-focus (Z) movements of the microscope. An average time of 27.00 ± 2.58 seconds is required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average maximum Laplacian value of 11.83 with tested images. The whole automation process is controlled by a smartphone device, which is responsible for acquiring images for further diagnosis via convolutional neural networks. The prototype is specially designed for resource-poor settings, where microscopy diagnosis is still a routine process. The coalescence between convolutional neural network predictive models and the automation of the movements of a conventional optical microscope confer the system a wide range of image-based diagnosis applications. The accessibility of the system could help improve diagnostics and provide new tools to laboratories worldwide.
KW - Automation
KW - Humans
KW - Imaging, Three-Dimensional/methods
KW - Microscopy/methods
KW - Printing, Three-Dimensional/instrumentation
KW - Robotics/instrumentation
KW - Smartphone
KW - Software
UR - https://www.mendeley.com/catalogue/ffeaf3dc-7b70-3b3a-a955-272f02916d1f/
UR - http://www.scopus.com/inward/record.url?scp=85196965506&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0304085
DO - 10.1371/journal.pone.0304085
M3 - Article
C2 - 38905190
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e0304085
ER -