Determination of the NNLO low-energy constant C93

Maarten Golterman, Kim Maltman, Santiago Peris

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)


© 2017 American Physical Society. Experimental data from hadronic τ decays allow for a precision determination of the slope of the I=1 vacuum polarization at zero momentum. We use this information to provide a value for the next-to-next-to-leading order (NNLO) low-energy constant C93 in chiral perturbation theory. The largest systematic error in this determination results from the neglect of terms NNNLO (and higher) in the effective chiral Lagrangian, whose presence in the data will, in general, make the effective C93 determined in an NNLO analysis mass dependent. We estimate the size of this effect by using strange hadronic τ-decay data to perform an alternate C93 determination based on the slope of the strange vector polarization at zero momentum, which differs from that of the I=1 vector channel only through SU(3) flavor-breaking effects. We also comment on the impact of such higher order effects on ChPT-based estimates for the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.
Original languageEnglish
Article number054027
JournalPhysical Review D
Issue number5
Publication statusPublished - 1 Sept 2017


Dive into the research topics of 'Determination of the NNLO low-energy constant C93'. Together they form a unique fingerprint.

Cite this