Determination of low analyte concentrations by near-infrared spectroscopy: Effect of spectral pretreatments and estimation of multivariate detection limits

Marcel Blanco, Miguel Castillo, Antonio Peinado, Rafael Beneyto

Research output: Contribution to journalArticleResearchpeer-review

48 Citations (Scopus)

Abstract

Near infrared spectroscopy (NIRS) was used in combination with partial least squares (PLS) calibration to determine low concentrated analytes. The effect of the orthogonal signal correction (OSC) and net analyte signal (NAS) pretreatments on the models obtained at concentrations of analyte near its detection limit was studied. Both pretreatments were found to accurately resolve the analyte signal and allow the construction of PLS models from a reduced number of factors; however, they provided no substantial advantage in terms of %RSE for the prediction samples. Multiple methodologies for the estimation of detection limits could be found in the bibliography. Nevertheless, detection limits were determined by a multivariate method based on the sample-specific standard error for PLS regression, and compared with the univariate method endorsed by ISO 11483. The two methods gave similar results, both being effective for the intended purpose of estimating detection limits for PLS models. Although OSC and NAS allow isolating the analyte signal from the matrix signal, they provide no substantial improvement in terms of detection limits. The proposed method was used to the determine 2-ethylhexanol at concentrations from 20 to 1600 ppm in an industrial ester. The detection limit obtained, round 100 ppm, testifies to the ability of NIR spectroscopy to detect low concentrated analytes. © 2006 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)318-323
JournalAnalytica Chimica Acta
Volume581
Issue number2
DOIs
Publication statusPublished - 9 Jan 2007

Keywords

  • Detection limit
  • Low concentration analytes
  • Near infrared spectroscopy
  • Net analyte signal
  • Orthogonal signal correction

Fingerprint Dive into the research topics of 'Determination of low analyte concentrations by near-infrared spectroscopy: Effect of spectral pretreatments and estimation of multivariate detection limits'. Together they form a unique fingerprint.

Cite this