Deregulation of calcium homeostasis mediates secreted α-synuclein-induced neurotoxicity

Katerina Melachroinou, Maria Xilouri, Evangelia Emmanouilidou, Roser Masgrau, Panagiota Papazafiri, Leonidas Stefanis, Kostas Vekrellis

Research output: Contribution to journalArticleResearchpeer-review

56 Citations (Scopus)

Abstract

α-Synuclein (AS) plays a crucial role in Parkinson's disease pathogenesis. AS is normally secreted from neuronal cells and can thus exert paracrine effects. We have previously demonstrated that naturally secreted AS species, derived from SH-SY5Y cells inducibly overexpressing human wild type AS, can be toxic to recipient neuronal cells. In the current study, we show that application of secreted AS alters membrane fluidity and increases calcium (Ca2+) entry. This influx is reduced on pharmacological inhibition of voltage-operated Ca2+ channels. Although no change in free cytosolic Ca2+ levels is observed, a significantly increased mitochondrial Ca2+ sequestration is found in recipient cells. Application of voltage-operated Ca2+ channel blockers or Ca2+ chelators abolishes AS-mediated toxicity. AS-treated cells exhibit increased calpain activation, and calpain inhibition greatly alleviates the observed toxicity. Collectively, our data suggest that secreted AS exerts toxicity through engagement, at least in part, of the Ca2+ homeostatic machinery. Therefore, manipulating Ca2+ signaling pathways might represent a potential therapeutic strategy for Parkinson's disease. © 2013 Elsevier Inc.
Original languageEnglish
Pages (from-to)2853-2865
JournalNeurobiology of Aging
Volume34
DOIs
Publication statusPublished - 1 Dec 2013

Keywords

  • Alpha-synuclein
  • Calpains
  • Exosomes
  • Membrane fluidity
  • Mitochondria
  • Neurodegeneration
  • Parkinson's disease
  • Secretion

Fingerprint

Dive into the research topics of 'Deregulation of calcium homeostasis mediates secreted α-synuclein-induced neurotoxicity'. Together they form a unique fingerprint.

Cite this