TY - JOUR
T1 - Deficiency of the NF-κB inhibitor caspase activating and recruitment domain 8 in patients with rheumatoid arthritis is associated with disease severity
AU - Fontalba, Ana
AU - Martinez-Taboada, Victor
AU - Gutierrez, Olga
AU - Pipaon, Carlos
AU - Benito, Natividad
AU - Balsa, Alejandro
AU - Blanco, Ricardo
AU - Fernandez-Luna, Jose L.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2007/10/1
Y1 - 2007/10/1
N2 - Caspase activating and recruitment domain 8 (CARD8) potently inhibits NF-κB signaling, which plays a key role in inflammation, and may contribute to avoid a pathologic activation of NF-κB; however, the transcriptional mechanisms regulating CARD8 expression and the relevance of this protein in inflammatory diseases are poorly understood. We found a NF-κB-binding element within the human CARD8 promoter that was required for transcriptional activity in response to TNF-α and the p65 subunit of NF-κB. Moreover, TNF-α and overexpression of p65 induced the formation of NF-κB-CARD8 promoter complexes. Thus, CARD8 may control NF-κB activation through a regulatory loop. To study the relevance of CARD8 in chronic inflammatory disorders, we functionally characterized a deleterious polymorphism (p.C10X) and studied its association with rheumatoid arthritis (RA). Transfection of cell lines with the allelic variants of CARD8 revealed that full-length (CARD8-L) but not truncated (CARD8-S) protein inhibits NF-κB transcriptional activity, and abrogates the binding of NF-κB to its consensus site. Furthermore, in contrast to the full-length protein, CARD8-S did not modify the expression of NF-κB target genes (cIAP, A1), in response to TNF-α. We analyzed the p.C10X polymorphism in 200 patients with RA, and found that homozygous carriers of the CARD8-S allele have higher disease activity score (p = 0.014), more extra-articular manifestations (p = 0.03), and a lower probability of clinical remission (p = 0.03) than the CARD8-L allele carriers. Overall, our findings provide molecular insight into the expression of CARD8 by NF-κB, and suggest that a deleterious polymorphism of CARD8 may help predict the severity of RA.
AB - Caspase activating and recruitment domain 8 (CARD8) potently inhibits NF-κB signaling, which plays a key role in inflammation, and may contribute to avoid a pathologic activation of NF-κB; however, the transcriptional mechanisms regulating CARD8 expression and the relevance of this protein in inflammatory diseases are poorly understood. We found a NF-κB-binding element within the human CARD8 promoter that was required for transcriptional activity in response to TNF-α and the p65 subunit of NF-κB. Moreover, TNF-α and overexpression of p65 induced the formation of NF-κB-CARD8 promoter complexes. Thus, CARD8 may control NF-κB activation through a regulatory loop. To study the relevance of CARD8 in chronic inflammatory disorders, we functionally characterized a deleterious polymorphism (p.C10X) and studied its association with rheumatoid arthritis (RA). Transfection of cell lines with the allelic variants of CARD8 revealed that full-length (CARD8-L) but not truncated (CARD8-S) protein inhibits NF-κB transcriptional activity, and abrogates the binding of NF-κB to its consensus site. Furthermore, in contrast to the full-length protein, CARD8-S did not modify the expression of NF-κB target genes (cIAP, A1), in response to TNF-α. We analyzed the p.C10X polymorphism in 200 patients with RA, and found that homozygous carriers of the CARD8-S allele have higher disease activity score (p = 0.014), more extra-articular manifestations (p = 0.03), and a lower probability of clinical remission (p = 0.03) than the CARD8-L allele carriers. Overall, our findings provide molecular insight into the expression of CARD8 by NF-κB, and suggest that a deleterious polymorphism of CARD8 may help predict the severity of RA.
UR - http://www.scopus.com/inward/record.url?scp=43049177426&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.179.7.4867
DO - 10.4049/jimmunol.179.7.4867
M3 - Artículo
C2 - 17878386
AN - SCOPUS:43049177426
VL - 179
SP - 4867
EP - 4873
JO - Journal of Immunology
JF - Journal of Immunology
SN - 0022-1767
IS - 7
ER -