TY - JOUR
T1 - Data compression for a voltammetric electronic tongue modelled with artificial neural networks
AU - Moreno-Barón, Laura
AU - Cartas, Raúl
AU - Merkoçi, Arben
AU - Alegret, Salvador
AU - Gutiérrez, Juan M.
AU - Leija, Lorenzo
AU - Hernandez, Pablo R.
AU - Muñoz, Roberto
AU - Del Valle, Manuel
PY - 2005/11/9
Y1 - 2005/11/9
N2 - In the study of voltammetric electronic tongues, a key point is the preprocessing of the departure information, the voltammograms which form the response of the sensor array, prior to classification or modeling with advanced chemometric tools. This work demonstrates the use of the discrete wavelet transform (DWT) for compacting these voltammograms prior to modeling. After compression, a system based on artificial neural networks (ANNs) was used for the quantification of the electroactive substances present, using the obtained wavelet decomposition coefficients as their inputs. The Daubechies wavelet of fourth order permitted an effective compression up to 16 coefficients, reducing the original dimension by ca. 10 times. The case studied is a mixture of three oxidizable amino acids:tryptophan, cysteine, and tyrosine. With the reduced information, one ANN per specie was trained using the Bayesian regularization algorithm. The proposed procedure was compared with the more conventional treatments of downsampling the voltammogram, or its feature extraction employing principal component analysis prior to ANNs. Copyright © Taylor & Francis, Inc.
AB - In the study of voltammetric electronic tongues, a key point is the preprocessing of the departure information, the voltammograms which form the response of the sensor array, prior to classification or modeling with advanced chemometric tools. This work demonstrates the use of the discrete wavelet transform (DWT) for compacting these voltammograms prior to modeling. After compression, a system based on artificial neural networks (ANNs) was used for the quantification of the electroactive substances present, using the obtained wavelet decomposition coefficients as their inputs. The Daubechies wavelet of fourth order permitted an effective compression up to 16 coefficients, reducing the original dimension by ca. 10 times. The case studied is a mixture of three oxidizable amino acids:tryptophan, cysteine, and tyrosine. With the reduced information, one ANN per specie was trained using the Bayesian regularization algorithm. The proposed procedure was compared with the more conventional treatments of downsampling the voltammogram, or its feature extraction employing principal component analysis prior to ANNs. Copyright © Taylor & Francis, Inc.
KW - Artificial neural networks
KW - Discrete wavelet transform
KW - Oxidizable aminoacids
KW - PCA
KW - Voltammetric electronic tongue
U2 - 10.1080/00032710500259342
DO - 10.1080/00032710500259342
M3 - Article
VL - 38
SP - 2189
EP - 2206
IS - 13
ER -