Darwin's wind hypothesis: Does it work for plant dispersal in fragmented habitats?

Miquel Riba, Maria Mayol, Barbara E. Giles, Ophélie Ronce, Eric Imbert, Marco Van Der Velde, Stéphanie Chauvet, Lars Ericson, R. Bijlsma, Ben Vosman, M. J.M. Smulders, Isabelle Olivieri

Research output: Contribution to journalArticleResearchpeer-review

47 Citations (Scopus)


Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. • Inverse terminal velocity () of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. • In the highly patchy Spanish landscapes, seed increased significantly with increasing connectivity. A common garden experiment suggested that differences in may be in part genetically based. The was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, was found to increase along a south-north latitudinal gradient. • Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes. © New Phytologist (2009).
Original languageEnglish
Pages (from-to)667-677
JournalNew Phytologist
Publication statusPublished - 1 Aug 2009


  • Common garden
  • Evolution of dispersal
  • Fragmentation
  • Latitudinal gradient
  • Leading edge hypothesis
  • Phenotypic variation


Dive into the research topics of 'Darwin's wind hypothesis: Does it work for plant dispersal in fragmented habitats?'. Together they form a unique fingerprint.

Cite this