TY - JOUR
T1 - Darboux integrability and algebraic invariant surfaces for the Rikitake system
AU - Llibre, Jaume
AU - Valls, Cl̀udia
PY - 2008/4/8
Y1 - 2008/4/8
N2 - In this paper, we study the Darboux integrability of the Rikitake system x =-μx+yz, y =-μy+x (z-a), z =1-xy. More precisely, we characterize all the invariant algebraic surfaces, the exponential factors, and the polynomial, rational, and Darboux first integrals of this system according to the values of its parameters a and μ. © 2008 American Institute of Physics.
AB - In this paper, we study the Darboux integrability of the Rikitake system x =-μx+yz, y =-μy+x (z-a), z =1-xy. More precisely, we characterize all the invariant algebraic surfaces, the exponential factors, and the polynomial, rational, and Darboux first integrals of this system according to the values of its parameters a and μ. © 2008 American Institute of Physics.
U2 - https://doi.org/10.1063/1.2897983
DO - https://doi.org/10.1063/1.2897983
M3 - Article
SN - 0022-2488
VL - 49
JO - Journal of Mathematical Physics
JF - Journal of Mathematical Physics
M1 - 032702
ER -