Darboux integrability and algebraic invariant surfaces for the Rikitake system

Jaume Llibre, Cl̀udia Valls

Research output: Contribution to journalArticleResearchpeer-review

11 Citations (Scopus)

Abstract

In this paper, we study the Darboux integrability of the Rikitake system x =-μx+yz, y =-μy+x (z-a), z =1-xy. More precisely, we characterize all the invariant algebraic surfaces, the exponential factors, and the polynomial, rational, and Darboux first integrals of this system according to the values of its parameters a and μ. © 2008 American Institute of Physics.
Original languageEnglish
Article number032702
JournalJournal of Mathematical Physics
Volume49
DOIs
Publication statusPublished - 8 Apr 2008

Fingerprint Dive into the research topics of 'Darboux integrability and algebraic invariant surfaces for the Rikitake system'. Together they form a unique fingerprint.

Cite this