Damping of Josephson Oscillations in Strongly Correlated One-Dimensional Atomic Gases

J. Polo, V. Ahufinger, F. W.J. Hekking, A. Minguzzi

Research output: Contribution to journalArticleResearchpeer-review

30 Citations (Scopus)

Abstract

© 2018 American Physical Society. We study Josephson oscillations of two strongly correlated one-dimensional bosonic clouds separated by a localized barrier. Using a quantum-Langevin approach and the exact Tonks-Girardeau solution in the impenetrable-boson limit, we determine the dynamical evolution of the particle-number imbalance, displaying an effective damping of the Josephson oscillations which depends on barrier height, interaction strength, and temperature. We show that the damping originates from the quantum and thermal fluctuations intrinsically present in the strongly correlated gas. Because of the density-phase duality of the model, the same results apply to particle-current oscillations in a one-dimensional ring where a weak barrier couples different angular momentum states.
Original languageEnglish
Article number090404
JournalPhysical Review Letters
Volume121
Issue number9
DOIs
Publication statusPublished - 31 Aug 2018

Fingerprint

Dive into the research topics of 'Damping of Josephson Oscillations in Strongly Correlated One-Dimensional Atomic Gases'. Together they form a unique fingerprint.

Cite this