Crystal symmetry and pressure effects on the valence band structure of γ-InSe and ε-GaSe: Transport measurements and electronic structure calculations

D. Errandonea, A. Segura, F. J. Manjón, A. Chevy, E. Machado, G. Tobias, P. Ordejón, E. Canadell

    Research output: Contribution to journalArticleResearchpeer-review

    49 Citations (Scopus)

    Abstract

    This paper reports on Hall effect and resistivity measurements under high pressure up to 3-4 GPa in p-type γ-indium selenide (InSe) (doped with As, Cd, or Zn) and ε-gallium selenide (GaSe) (doped with N or Sn). The pressure behavior of the hole concentration and mobility exhibits dramatic differences between the two layered compounds. While the hole concentration and mobility increase moderately and monotonously in ε-GaSe, a large increase of the hole concentration near 0.8 GPa and a large continuous increase of the hole mobility, which doubled its ambient pressure value by 3.2 GPa, is observed in γ-InSe. Electronic structure calculations show that the different pressure behavior of hole transport parameters can be accounted for by the evolution of the valence-band maximum in each material under compression. While the shape of the valence band maximum is virtually pressure-insensitive in ε-GaSe, it changes dramatically in γ-InSe, with the emergence of a ring-shaped subsidiary maximum that becomes the absolute valence-band maximum as pressure increases. These differences are shown to be a consequence of the presence or absence of a symmetry element (mirror plane perpendicular to the anisotropy axis) in the point group of each polytype (D 3h for the ε-polytype and C 3v for the γ-polytype), resulting in different selection rules that affect the k→·p→ interaction between valence bands. ©2005 The American Physical Society.
    Original languageEnglish
    Article number125206
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Volume71
    Issue number12
    DOIs
    Publication statusPublished - 15 Mar 2005

    Fingerprint Dive into the research topics of 'Crystal symmetry and pressure effects on the valence band structure of γ-InSe and ε-GaSe: Transport measurements and electronic structure calculations'. Together they form a unique fingerprint.

  • Cite this

    Errandonea, D., Segura, A., Manjón, F. J., Chevy, A., Machado, E., Tobias, G., Ordejón, P., & Canadell, E. (2005). Crystal symmetry and pressure effects on the valence band structure of γ-InSe and ε-GaSe: Transport measurements and electronic structure calculations. Physical Review B - Condensed Matter and Materials Physics, 71(12), [125206]. https://doi.org/10.1103/PhysRevB.71.125206