Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale

Linglong Li, Yaodong Yang, Zhengchun Liu, Stephen Jesse, Sergei V. Kalinin, Rama K. Vasudevan

    Research output: Contribution to journalArticleResearchpeer-review

    3 Citations (Scopus)


    © 2016 Author(s). The nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with hysteresis measurements with varying voltage windows on (K,Na)NbO3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the amplitude during hysteresis loop acquisition shows a clear decrease with increasing AC bias. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. This study suggests applicability at local length scales of fundamental principles of Rayleigh behavior, with associated implications for future nanoscale ferroic devices.
    Original languageEnglish
    Article number172905
    JournalApplied Physics Letters
    Issue number17
    Publication statusPublished - 25 Apr 2016


    Dive into the research topics of 'Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale'. Together they form a unique fingerprint.

    Cite this