Abstract
The geometries, vibrational frequencies, and metal-ligand bond dissociation energies of 18 different structures of the Cu(NO2)2 complex have been studied. Mg(NO2)2 and Cu(NO3)2 have also been studied for comparison. The most stable structure of Cu(NO2)2 and Cu(NO3)2 corresponds to a D2h one with a coplanar η2-O,O coordination for the two NO2 ligands. For Mg(NO2)2 the most stable structure is a D2d one. The bonding in the D2h and D2d structures of Cu(NO2)2 is analyzed. For the MNO2 systems the binding energy is very similar with both metals, while for the M(NO2)2 complexes the difference when changing the metal is very important. This behavior is related to the first and second ionization potentials of Cu and Mg. The computed vibrational frequencies are in good agreement with the available experimental data.
Original language | English |
---|---|
Pages (from-to) | 4512-4517 |
Journal | Inorganic Chemistry |
Volume | 37 |
Issue number | 18 |
DOIs | |
Publication status | Published - 7 Sep 1998 |