Conduction mechanisms and charge storage in Si-nanocrystals metal-oxide-semiconductor memory devices studied with conducting atomic force microscopy

M. Porti, M. Avidano, M. Nafría, X. Aymerich, J. Carreras, B. Garrido

Research output: Contribution to journalArticleResearchpeer-review

13 Citations (Scopus)

Abstract

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas (∼300 nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ∼20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization. © 2005 American Institute of Physics.
Original languageEnglish
Article number056101
JournalJournal of Applied Physics
Volume98
DOIs
Publication statusPublished - 1 Sept 2005

Fingerprint

Dive into the research topics of 'Conduction mechanisms and charge storage in Si-nanocrystals metal-oxide-semiconductor memory devices studied with conducting atomic force microscopy'. Together they form a unique fingerprint.

Cite this