### Abstract

© 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We discuss the conditions for the classicality of quantum states with a very large number of identical particles. By defining the center of mass from a large set of Bohmian particles, we show that it follows a classical trajectory when the distribution of the Bohmian particle positions in a single experiment is always equal to the marginal distribution of the quantum state in physical space. This result can also be interpreted as a single experiment generalization of the well-known Ehrenfest theorem. We also demonstrate that the classical trajectory of the center of mass is fully compatible with a quantum (conditional) wave function solution of a classical non-linear Schrödinger equation. Our work shows clear evidence for a quantum-classical inter-theory unification, and opens new possibilities for practical quantum computations with decoherence.

Original language | English |
---|---|

Article number | 063031 |

Journal | New Journal of Physics |

Volume | 19 |

Issue number | 6 |

DOIs | |

Publication status | Published - 1 Jun 2017 |

### Keywords

- Bohmian mechanics
- decoherence
- open systems
- quantum mechanics
- quantum-to-classical transition

## Fingerprint Dive into the research topics of 'Conditions for the classicality of the center of mass of many-particle quantum states'. Together they form a unique fingerprint.

## Cite this

Oriols, X., & Benseny, A. (2017). Conditions for the classicality of the center of mass of many-particle quantum states.

*New Journal of Physics*,*19*(6), [063031]. https://doi.org/10.1088/1367-2630/aa719a