Composite scalar dark matter

Michele Frigerio, Alex Pomarol, Francesco Riva, Alfredo Urbano

Research output: Contribution to journalArticleResearchpeer-review

102 Citations (Scopus)


We show that the dark matter (DM) could be a light composite scalar η, emerging from a TeV-scale strongly-coupled sector as a pseudo Nambu-Goldstone boson (pNGB). Such state arises naturally in scenarios where the Higgs is also a composite pNGB, as in O(6)/O(5) models, which are particularly predictive, since the low-energy interactions of η are determined by symmetry considerations. We identify the region of parameters where η has the required DM relic density, satisfying at the same time the constraints from Higgs searches at the LHC, as well as DM direct searches. Compositeness, in addition to justify the lightness of the scalars, can enhance the DM scattering rates and lead to an excellent discovery prospect for the near future. For a Higgs mass m h ≃ 125 GeV and a pNGB characteristic scale f ≲ 1 TeV, we find that the DM mass is either m η ≃ 50-70 GeV, with DM annihilations driven by the Higgs resonance, or in the range 100-500 GeV, where the DM derivative interaction with the Higgs becomes dominant. In the former case the invisible Higgs decay to two DM particles could weaken the LHC Higgs signal.
Original languageEnglish
Article number015
JournalJournal of High Energy Physics
Issue number7
Publication statusPublished - 6 Aug 2012


  • Cosmology of theories beyond the SM
  • Higgs physics
  • Technicolor and composite models


Dive into the research topics of 'Composite scalar dark matter'. Together they form a unique fingerprint.

Cite this