TY - JOUR
T1 - Composite Electrodes Based on Carbon Materials Decorated with Hg Nanoparticles for the Simultaneous Detection of Cd(II), Pb(II) and Cu(II)
AU - Fernández, Laia L.
AU - Bastos-Arrieta, Julio
AU - Palet, Cristina
AU - Baeza, Mireia
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/15
Y1 - 2022/4/15
N2 - Monitoring water quality has become a goal to prevent issues related to human health and environmental conditions. In this sense, the concentration of metal ions in water sources is screened, as these are considered persistent contaminants. In this work, we describe the implementation of customized graphite electrodes decorated with two types of Hg nanoparticles (Hg-NPs), optimized toward the electrochemical detection of Cd, Pb and Cu. Here, we combine Hg, a well-known property to form alloys with other metals, with the nanoscale features of Hg-NPs, resulting in improved electrochemical sensors towards these analytes with a substantial reduction in the used Hg amount. Hg-NPs were synthesized using poly(diallyldimethylammonium) chloride (PDDA) in a combined role as a reducing and stabilizing agent, and then appropriately characterized by means of Transmission Electron Microscopy (TEM) and Zeta Potential. The surface of composite electrodes with optimized graphite content was modified by the drop-casting of the prepared Hg-NPs. The obtained nanocomposite electrodes were morphologically characterized by Scanning Electron Microscopy (SEM), and electrochemically by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results show that the Hg-NP-modified electrodes present better responses towards Cd(II), Pb(II) and Cu(II) detection in comparison with the bare graphite electrode. Analytical performance of sensors was evaluated by square-wave anodic stripping voltammetry (SWASV), obtaining a linear range of 0.005–0.5 mg·L−1 for Cd2+, of 0.028–0.37 mg·L−1 for Pb2+ and of 0.057–1.1 mg·L−1 for Cu2+. Real samples were analyzed using SWASV, showing good agreement with the recovery values of inductively coupled plasma–mass spectrometry (ICP-MS) measurements.
AB - Monitoring water quality has become a goal to prevent issues related to human health and environmental conditions. In this sense, the concentration of metal ions in water sources is screened, as these are considered persistent contaminants. In this work, we describe the implementation of customized graphite electrodes decorated with two types of Hg nanoparticles (Hg-NPs), optimized toward the electrochemical detection of Cd, Pb and Cu. Here, we combine Hg, a well-known property to form alloys with other metals, with the nanoscale features of Hg-NPs, resulting in improved electrochemical sensors towards these analytes with a substantial reduction in the used Hg amount. Hg-NPs were synthesized using poly(diallyldimethylammonium) chloride (PDDA) in a combined role as a reducing and stabilizing agent, and then appropriately characterized by means of Transmission Electron Microscopy (TEM) and Zeta Potential. The surface of composite electrodes with optimized graphite content was modified by the drop-casting of the prepared Hg-NPs. The obtained nanocomposite electrodes were morphologically characterized by Scanning Electron Microscopy (SEM), and electrochemically by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results show that the Hg-NP-modified electrodes present better responses towards Cd(II), Pb(II) and Cu(II) detection in comparison with the bare graphite electrode. Analytical performance of sensors was evaluated by square-wave anodic stripping voltammetry (SWASV), obtaining a linear range of 0.005–0.5 mg·L−1 for Cd2+, of 0.028–0.37 mg·L−1 for Pb2+ and of 0.057–1.1 mg·L−1 for Cu2+. Real samples were analyzed using SWASV, showing good agreement with the recovery values of inductively coupled plasma–mass spectrometry (ICP-MS) measurements.
KW - Hg nanoparticles
KW - cyclic voltammetry
KW - electrode surface modification
KW - environmental analysis
KW - nanocomposite graphite electrode
KW - simultaneous metal detection
KW - square-wave anodic stripping voltammetry
UR - http://www.scopus.com/inward/record.url?scp=85129165969&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/981a4b12-88c7-3216-8812-9a358dc1610a/
U2 - https://doi.org/10.3390/chemosensors10040148
DO - https://doi.org/10.3390/chemosensors10040148
M3 - Article
AN - SCOPUS:85129165969
SN - 2227-9040
VL - 10
JO - Chemosensors
JF - Chemosensors
IS - 4
M1 - 148
ER -