TY - JOUR
T1 - Comparison of two preclinical myocardial infarct models: Coronary coil deployment versus surgical ligation
AU - Gálvez-Montón, Carolina
AU - Prat-Vidal, Cristina
AU - Díaz-Güemes, Idoia
AU - Crisóstomo, Verónica
AU - Soler-Botija, Carolina
AU - Roura, Santiago
AU - Llucià-Valldeperas, Aida
AU - Perea-Gil, Isaac
AU - Sánchez-Margallo, Francisco M.
AU - Bayes-Genis, Antoni
PY - 2014/5/21
Y1 - 2014/5/21
N2 - Background: Despite recent advances, myocardial infarction (MI) remains the leading cause of death worldwide. Pre-clinical animal models that closely mimic human MI are pivotal for a quick translation of research and swine have similarities in anatomy and physiology. Here, we compared coronary surgical ligation versus coil embolization MI models in swine. Methods: Fifteen animals were randomly distributed to undergo surgical ligation (n = 7) or coil embolization (n = 8). We evaluated infarct size, scar fibrosis, inflammation, myocardial vascularization, and cardiac function by magnetic resonance imaging (MRI). Results: Thirty-five days after MI, there were no differences between the models in infarct size (P = 0.53), left ventricular (LV) ejection fraction (P = 0.19), LV end systolic volume (P = 0.22), LV end diastolic volume (P = 0.84), and cardiac output (P = 0.89). Histologically, cardiac scars did not differ and the collagen content, collagen type I (I), collagen type III (III), and the I/III ratio were similar in both groups. Inflammation was assessed using specific anti-CD3 and anti-CD25 antibodies. There was similar activation of inflammation throughout the heart after coil embolization (P = 0.78); while, there were more activated lymphocytes in the infarcted myocardium in the surgical occlusion model (P = 0.02). Less myocardial vascularization in the infarction areas compared with the border and remote zones only in coil embolization animals was observed (P = 0.004 and P = 0.014, respectively). Conclusions: Our results support that surgical occlusion and coil embolization MI models generate similar infarct size, cardiac function impairment, and myocardial fibrosis; although, inflammation and myocardial vascularization levels were closer to those found in humans when coil embolization was performed. © 2014 Gálvez-Montón et al.; licensee BioMed Central Ltd.
AB - Background: Despite recent advances, myocardial infarction (MI) remains the leading cause of death worldwide. Pre-clinical animal models that closely mimic human MI are pivotal for a quick translation of research and swine have similarities in anatomy and physiology. Here, we compared coronary surgical ligation versus coil embolization MI models in swine. Methods: Fifteen animals were randomly distributed to undergo surgical ligation (n = 7) or coil embolization (n = 8). We evaluated infarct size, scar fibrosis, inflammation, myocardial vascularization, and cardiac function by magnetic resonance imaging (MRI). Results: Thirty-five days after MI, there were no differences between the models in infarct size (P = 0.53), left ventricular (LV) ejection fraction (P = 0.19), LV end systolic volume (P = 0.22), LV end diastolic volume (P = 0.84), and cardiac output (P = 0.89). Histologically, cardiac scars did not differ and the collagen content, collagen type I (I), collagen type III (III), and the I/III ratio were similar in both groups. Inflammation was assessed using specific anti-CD3 and anti-CD25 antibodies. There was similar activation of inflammation throughout the heart after coil embolization (P = 0.78); while, there were more activated lymphocytes in the infarcted myocardium in the surgical occlusion model (P = 0.02). Less myocardial vascularization in the infarction areas compared with the border and remote zones only in coil embolization animals was observed (P = 0.004 and P = 0.014, respectively). Conclusions: Our results support that surgical occlusion and coil embolization MI models generate similar infarct size, cardiac function impairment, and myocardial fibrosis; although, inflammation and myocardial vascularization levels were closer to those found in humans when coil embolization was performed. © 2014 Gálvez-Montón et al.; licensee BioMed Central Ltd.
KW - Animal model surgery
KW - Coil embolization
KW - Magnetic resonance imaging
KW - Myocardial infarction
KW - Surgical occlusion
U2 - 10.1186/1479-5876-12-137
DO - 10.1186/1479-5876-12-137
M3 - Article
SN - 1479-5876
VL - 12
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
IS - 1
M1 - 137
ER -