TY - JOUR

T1 - Comparing geometric and kinetic cluster algorithms for molecular simulation data

AU - Keller, Bettina

AU - Daura, Xavier

AU - Van Gunsteren, Wilfred F.

PY - 2010/2/26

Y1 - 2010/2/26

N2 - The identification of metastable states of a molecule plays an important role in the interpretation of molecular simulation data because the free-energy surface, the relative populations in this landscape, and ultimately also the dynamics of the molecule under study can be described in terms of these states. We compare the results of three different geometric cluster algorithms (neighbor algorithm, K-medoids algorithm, and common-nearest-neighbor algorithm) among each other and to the results of a kinetic cluster algorithm. First, we demonstrate the characteristics of each of the geometric cluster algorithms using five two-dimensional data sets. Second, we analyze the molecular dynamics data of a Β -heptapeptide in methanol-a molecule that exhibits a distinct folded state, a structurally diverse unfolded state, and a fast folding/unfolding equilibrium-using both geometric and kinetic cluster algorithms. We find that geometric clustering strongly depends on the algorithm used and that the density based common-nearest-neighbor algorithm is the most robust of the three geometric cluster algorithms with respect to variations in the input parameters and the distance metric. When comparing the geometric cluster results to the metastable states of the Β -heptapeptide as identified by kinetic clustering, we find that in most cases the folded state is identified correctly but the overlap of geometric clusters with further metastable states is often at best approximate. © 2010 American Institute of Physics.

AB - The identification of metastable states of a molecule plays an important role in the interpretation of molecular simulation data because the free-energy surface, the relative populations in this landscape, and ultimately also the dynamics of the molecule under study can be described in terms of these states. We compare the results of three different geometric cluster algorithms (neighbor algorithm, K-medoids algorithm, and common-nearest-neighbor algorithm) among each other and to the results of a kinetic cluster algorithm. First, we demonstrate the characteristics of each of the geometric cluster algorithms using five two-dimensional data sets. Second, we analyze the molecular dynamics data of a Β -heptapeptide in methanol-a molecule that exhibits a distinct folded state, a structurally diverse unfolded state, and a fast folding/unfolding equilibrium-using both geometric and kinetic cluster algorithms. We find that geometric clustering strongly depends on the algorithm used and that the density based common-nearest-neighbor algorithm is the most robust of the three geometric cluster algorithms with respect to variations in the input parameters and the distance metric. When comparing the geometric cluster results to the metastable states of the Β -heptapeptide as identified by kinetic clustering, we find that in most cases the folded state is identified correctly but the overlap of geometric clusters with further metastable states is often at best approximate. © 2010 American Institute of Physics.

U2 - https://doi.org/10.1063/1.3301140

DO - https://doi.org/10.1063/1.3301140

M3 - Article

VL - 132

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

M1 - 074110

ER -