Abstract
By the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4+ cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4+ colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4+ tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material. Such specificity is combined with improved endosomal escape, what overall results in a precise and highly efficient tumor biodistribution. These data strongly support the functional recruitment as a convenient approach to generate protein materials for clinical applications. More precisely, they also support the unexpected concept that enhancing the unspecific membrane activity of a protein material does not necessarily compromise, but it can even improve, the selective cell targeting offered by an accompanying functional module. Statement of Significance: We have shown here that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies.
Original language | English |
---|---|
Pages (from-to) | 426-432 |
Number of pages | 7 |
Journal | Acta Biomaterialia |
Volume | 99 |
DOIs | |
Publication status | Published - Nov 2019 |
Keywords
- Active targeting
- CXCR4
- Colorectal cancer
- Fusogenic peptide
- Protein materials
- Self-assembling