Classification of invariant valuations on the quaternionic plane

Andreas Bernig, Gil Solanes

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

© 2014 Elsevier Inc. We describe the orbit space of the action of the group Sp(2)Sp(1) on the real Grassmann manifolds Grk(H{double-struck}2) in terms of certain quaternionic matrices of Moore rank not larger than 2. We then give a complete classification of valuations on the quaternionic plane H{double-struck}2 which are invariant under the action of the group Sp(2)Sp(1).
Original languageEnglish
Pages (from-to)2933-2961
JournalJournal of Functional Analysis
Volume267
DOIs
Publication statusPublished - 1 Jan 2014

Keywords

  • Cosine transform
  • Hadwiger theorem
  • Kähler angle
  • Valuation

Fingerprint Dive into the research topics of 'Classification of invariant valuations on the quaternionic plane'. Together they form a unique fingerprint.

Cite this