Centers for generalized quintic polynomial differential systems

Jaume Giné, Jaume Llibre, Claudia Valls

Research output: Contribution to journalArticleResearchpeer-review

Abstract

© 2017 Rocky Mountain Mathematics Consortium. We classify the centers of polynomial differential systems in R2 of odd degree d ≥ 5, in complex notation, as . z = iz + (zz)(d-5)=2(Az5 + Bz4z + Cz3z2 + Dz2z3 + Ezz4 + Fz5), where A;B;C;D;E; F 2 C and either A = Re(D) = 0, A = Im(D) = 0, Re(A) = D = 0 or Im(A) = D = 0.
Original languageEnglish
Pages (from-to)1097-1120
JournalRocky Mountain Journal of Mathematics
Volume47
Issue number4
DOIs
Publication statusPublished - 1 Jan 2017

Keywords

  • Bautin method
  • Degenerate center
  • Lyapunov constants
  • Nilpotent center

Fingerprint

Dive into the research topics of 'Centers for generalized quintic polynomial differential systems'. Together they form a unique fingerprint.

Cite this