Abstract
We characterize the centers of the planar polynomial differential systems of degree d≥5 odd that in complex notation writes asz=iz+( zz̄)d-52(Az5+Bz4z̄+ Cz3z̄2+Dz2z̄3+Ezz̄ 4+Fz̄5),where A,B,C,D,E,FC and either A=Re(E)=0, or A=Im(E)=0, or Re(A)=E=0, or Im(A)=E=0. © 2014 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 187-195 |
Journal | Applied Mathematics and Computation |
Volume | 242 |
DOIs | |
Publication status | Published - 1 Sep 2014 |
Keywords
- Nondegenerate center
- Poincaré- Lyapunov constants
- Polynomial differential systems