Centers for a 6-parameter family of polynomial vector fields of arbitrary degree

Jaume Llibre, Clàudia Valls

Research output: Contribution to journalArticleResearchpeer-review

2 Citations (Scopus)

Abstract

For all non-negative integers n1, n2, n3, j1, j2 and j3 with nk + jk > 1 for k = 1, 2, 3, (nk, jk) ≠ (nl, jl) if k ≠ l, j3 = n3 - 1 and jk ≠ nk - 1 for k = 1, 2, we study the center variety of the 6-parameter family of real planar polynomial vector (over(x, ̇), over(y, ̇)) given, in complex notation, by over(z, ̇) = i z + A zn1 over(z, ̄)j1 + B zn2 over(z, ̄)j2 + C zn3 over(z, ̄)j3, where z = x + i y and A, B, C ∈ C \ {0}. © 2007 Elsevier Masson SAS. All rights reserved.
Original languageEnglish
Pages (from-to)40-53
JournalBulletin des Sciences Mathematiques
Volume132
DOIs
Publication statusPublished - 1 Jan 2008

Keywords

  • Centers
  • Polynomial vector fields
  • Reversibility

Fingerprint

Dive into the research topics of 'Centers for a 6-parameter family of polynomial vector fields of arbitrary degree'. Together they form a unique fingerprint.

Cite this