TY - JOUR
T1 - Carbon-based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring
AU - Peñuelas, J.
AU - Castells, E.
AU - Joffre, R.
AU - Tognetti, R.
PY - 2002
Y1 - 2002
N2 - We studied carbon-based secondary and structural compounds (CBSSCs) in Myrtus communis, Erica arborea, and Juniperus communis co-occuring in a natural CO2 spring site and in a nearby control site in a Mediterranean environment. Leaf concentrations of phenolics and CBSSCs, such as lignin, cellulose, and hemicellulose, total nonstructural carbohydrates (TNCs), and lipids were measured monthly (phenolics) and every two months (the other compounds) throughout a year. There was a slight seasonal trend towards maximum concentrations of most of these CBSSCs during autumn-winter and minimum values during the spring season, particularly in Myrtus communis. For most of the CBSSCs and species, there were no consistent or significant patterns in response to the elevated [CO2] (c. 700 μmol mol-1) of the spring site. These results were not due to a dilution effect by increased structural or nonstructural carbon. Therefore, in contrast to many experimental studies of CO2 enrichment, mainly conducted for short periods, there were no greater concentrations of phenolics, and, as in many of these studies, there were neither greater concentrations of the other CBSSCs. These results do not agree with the predictions of the carbon source-sink hypotheses. Possible causes of this disagreement are discussed. These causes include the complex heterogeneous environmental conditions and the variability of resource availabilities in the field, photosynthetic down-regulation, and/or the homeostatic and evolutionary nature of organisms. These results suggest evolutionary adaptive responses to changes in CO2. They also suggest caution in attributing increased CBSSC concentrations to elevated [CO2] at long-term scale in natural conditions, and therefore in their implications for plant-herbivore interactions and for decomposition.
AB - We studied carbon-based secondary and structural compounds (CBSSCs) in Myrtus communis, Erica arborea, and Juniperus communis co-occuring in a natural CO2 spring site and in a nearby control site in a Mediterranean environment. Leaf concentrations of phenolics and CBSSCs, such as lignin, cellulose, and hemicellulose, total nonstructural carbohydrates (TNCs), and lipids were measured monthly (phenolics) and every two months (the other compounds) throughout a year. There was a slight seasonal trend towards maximum concentrations of most of these CBSSCs during autumn-winter and minimum values during the spring season, particularly in Myrtus communis. For most of the CBSSCs and species, there were no consistent or significant patterns in response to the elevated [CO2] (c. 700 μmol mol-1) of the spring site. These results were not due to a dilution effect by increased structural or nonstructural carbon. Therefore, in contrast to many experimental studies of CO2 enrichment, mainly conducted for short periods, there were no greater concentrations of phenolics, and, as in many of these studies, there were neither greater concentrations of the other CBSSCs. These results do not agree with the predictions of the carbon source-sink hypotheses. Possible causes of this disagreement are discussed. These causes include the complex heterogeneous environmental conditions and the variability of resource availabilities in the field, photosynthetic down-regulation, and/or the homeostatic and evolutionary nature of organisms. These results suggest evolutionary adaptive responses to changes in CO2. They also suggest caution in attributing increased CBSSC concentrations to elevated [CO2] at long-term scale in natural conditions, and therefore in their implications for plant-herbivore interactions and for decomposition.
KW - Cellulose
KW - Erica arborea
KW - Juniperus communis
KW - Lignin
KW - Lipids
KW - Myrtus communis
KW - Phenolics
KW - Total nonstructural carbohydrates
UR - http://www.scopus.com/inward/record.url?scp=0036102541&partnerID=8YFLogxK
U2 - 10.1046/j.1365-2486.2002.00466.x
DO - 10.1046/j.1365-2486.2002.00466.x
M3 - Article
AN - SCOPUS:0036102541
VL - 8
SP - 281
EP - 288
JO - Global Change Biology
JF - Global Change Biology
SN - 1354-1013
IS - 3
ER -