Carbon and Chlorine Isotope Fractionation Patterns Associated with Different Engineered Chloroform Transformation Reactions

Clara Torrentó, Jordi Palau, Diana Rodríguez-Fernández, Benjamin Heckel, Armin Meyer, Cristina Domènech, Mònica Rosell, Albert Soler, Martin Elsner, Daniel Hunkeler

    Research output: Contribution to journalArticleResearchpeer-review

    18 Citations (Scopus)

    Abstract

    © 2017 American Chemical Society. To use compound-specific isotope analysis for confidently assessing organic contaminant attenuation in the environment, isotope fractionation patterns associated with different transformation mechanisms must first be explored in laboratory experiments. To deliver this information for the common groundwater contaminant chloroform (CF), this study investigated for the first time both carbon and chlorine isotope fractionation for three different engineered reactions: oxidative C-H bond cleavage using heat-activated persulfate, transformation under alkaline conditions (pH ∼ 12) and reductive C-Cl bond cleavage by cast zerovalent iron, Fe(0). Carbon and chlorine isotope fractionation values were -8 ± 1‰ and -0.44 ± 0.06‰ for oxidation, -57 ± 5‰ and -4.4 ± 0.4‰ for alkaline hydrolysis (pH 11.84 ± 0.03), and -33 ± 11‰ and -3 ± 1‰ for dechlorination, respectively. Carbon and chlorine apparent kinetic isotope effects (AKIEs) were in general agreement with expected mechanisms (C-H bond cleavage in oxidation by persulfate, C-Cl bond cleavage in Fe(0)-mediated reductive dechlorination and E1CB elimination mechanism during alkaline hydrolysis) where a secondary AKIECl (1.00045 ± 0.00004) was observed for oxidation. The different dual carbon-chlorine (Δδ13C vs Δδ37Cl) isotope patterns for oxidation by thermally activated persulfate and alkaline hydrolysis (17 ± 2 and 13.0 ± 0.8, respectively) vs reductive dechlorination by Fe(0) (8 ± 2) establish a base to identify and quantify these CF degradation mechanisms in the field.
    Original languageEnglish
    Pages (from-to)6174-6184
    JournalEnvironmental Science and Technology
    Volume51
    Issue number11
    DOIs
    Publication statusPublished - 6 Jun 2017

    Fingerprint Dive into the research topics of 'Carbon and Chlorine Isotope Fractionation Patterns Associated with Different Engineered Chloroform Transformation Reactions'. Together they form a unique fingerprint.

    Cite this