Abstract
The construction of the C*-algebra associated to a directed graph E is extended to incorporate a family C consisting of partitions of the sets of edges emanating from the vertices of E. These C*-algebras C*(E,C) are analyzed in terms of their ideal theory and K-theory, mainly in the case of partitions by finite sets. The groups K0(C*(E,C)) and K1(C*(E,C)) are completely described via a map built from an adjacency matrix associated to (E,C). One application determines the K-theory of the C*-algebras Um,nnc, confirming a conjecture of McClanahan. A reduced C*-algebra Cred*(E,C) is also introduced and studied. A key tool in its construction is the existence of canonical faithful conditional expectations from the C*-algebra of any row-finite graph to the C*-subalgebra generated by its vertices. Differences between Cred*(E,C) and C*(E,C), such as simplicity versus non-simplicity, are exhibited in various examples, related to some algebras studied by McClanahan. © 2011 Elsevier Inc.
Original language | English |
---|---|
Pages (from-to) | 2540-2568 |
Journal | Journal of Functional Analysis |
Volume | 261 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 Nov 2011 |
Keywords
- Amalgamated free product
- Conditional expectation
- Graph C -algebra *
- Ideal lattice
- Separated graph