Bribe-proof rules in the division problem

Jordi Massó, Alejandro Neme

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)


The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents with single-peaked preferences. A rule maps preference profiles into n shares of the amount to be allocated. A rule is bribe-proof if no group of agents can compensate one of its subgroups to misrepresent their preferences and, after an appropriate redistribution of their shares, each obtains a weakly preferred share and all agents in the misrepresenting subgroup obtain a strictly preferred share. We characterize all bribe-proof rules as the class of Pareto efficient, strategy-proof, and weakly replacement monotonic rules. This class is larger than the set of sequential allotment rules identified in Barberà et al. [Barberà, S., Jackson, M., Neme, A., 1997. Strategy-proof allotment rules. Games Econ. Behav. 18, 1-21]. © 2007 Elsevier Inc. All rights reserved.
Original languageEnglish
Pages (from-to)331-343
JournalGames and Economic Behavior
Publication statusPublished - 1 Nov 2007


  • Bribe-proofness
  • Pareto efficiency
  • Replacement monotonicity
  • Single-peakedness
  • Strategy-proofness


Dive into the research topics of 'Bribe-proof rules in the division problem'. Together they form a unique fingerprint.

Cite this