Abstract
Original language | English |
---|---|
Number of pages | 12 |
Journal | Microb. Cell Fact. |
Volume | 20 |
Issue number | 74 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Bioprocess development
- Expression system characterisation
- Komagataella phaffii (Pichia pastoris)
- Methanol-free bioprocesses
- Promoter regulation
- Recombinant protein production
- lipase B
- methanol
- recombinant protein
- Article
- biomass
- Candida antarctica
- controlled study
- endoplasmic reticulum
- fungus culture
- fungus growth
- Komagataella pastoris
- nonhuman
- protein expression
- unfolded protein response
- upregulation
Fingerprint
Dive into the research topics of 'Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris. / Garrigós-Martínez, J.; Vuoristo, K.; Nieto-Taype, M.A.; Tähtiharju, J.; Uusitalo, J.; Tukiainen, P.; Schmid, Christian; Tolstorukov, I.; Madden, K.; Penttilä, M.; Montesinos-Seguí, J.L.; Valero, F.; Glieder, A.; Garcia-Ortega, X.
In: Microb. Cell Fact., Vol. 20, No. 74, 2021.Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris
AU - Garrigós-Martínez, J.
AU - Vuoristo, K.
AU - Nieto-Taype, M.A.
AU - Tähtiharju, J.
AU - Uusitalo, J.
AU - Tukiainen, P.
AU - Schmid, Christian
AU - Tolstorukov, I.
AU - Madden, K.
AU - Penttilä, M.
AU - Montesinos-Seguí, J.L.
AU - Valero, F.
AU - Glieder, A.
AU - Garcia-Ortega, X.
N1 - Export Date: 20 May 2021 CODEN: MCFIC Correspondence Address: Glieder, A.; Institute of Molecular Biotechnology, Petersgasse 14, Austria; email: a.glieder@tugraz.at Chemicals/CAS: methanol, 67-56-1 Funding details: Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT Funding details: Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, CONCYTEC Funding details: Horizon 2020 Framework Programme, H2020, 730,976 Funding text 1: The Spanish group is member of 2017-SGR-1462 and the Reference Network in Biotechnology (XRB, Generalitat de Catalunya). JGM acknowledges a PIF scholarship from the Universitat Autònoma de Barcelona. MAN acknowledges award by the National Council of Science Technology and Technological Innovation (CONCYTEC) through its executing unit and the National Fund for Scientific, Technological and Technological Innovation Development (FONDECYT). This work was performed within the EU project IBISBA1.0 including the two IBISBA partners UAB and VTT in partnership with the bisy GmbH. EU-IBISBA obtained an ESFRI status in 2018, with the aim to accelerate biotechnology and synthetic biology activities in Europe through service infrastructure and know-how. EU-IBISBA is gratefully acknowledged for facilitating part of the work in this study through its trans-national access that received funding from the European Union’s Horizon 2020 research and innovation program (IBISBA 1.0 project) under grant N° 730,976. Funding text 2: This work was funded by the EU-IBISBA through its trans-national access funded by the European Union’s Horizon 2020 research and innovation program (IBISBA 1.0 project) under grant N° 730,976. References: Cereghino, G.P.L., Cereghino, J.L., Ilgen, C., Cregg, J.M., Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris (2002) Curr Opin Biotech, 13, pp. 329-332. , PID: 12323354; Ahmad, M., Hirz, M., Pichler, H., Schwab, H., Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production (2014) Appl Microbiol Biotechnol, 98, pp. 5301-5317. , COI: 1:CAS:528:DC%2BC2cXmsVCgtLk%3D, PID: 24743983; Yang, Z., Zhang, Z., Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review (2018) Biotechnol Adv, 36, pp. 182-195. , COI: 1:CAS:528:DC%2BC1cXos1aqsw%3D%3D, PID: 29129652; Juturu, V., Wu, J.C., Heterologous protein expression in Pichia pastoris: latest research progress and applications (2018) ChemBioChem, 19, pp. 7-21. , COI: 1:CAS:528:DC%2BC2sXhvFKhurrL, PID: 29235217; Vogl, T., Hartner, F.S., Glieder, A., New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris (2013) Curr Opin Biotechnol, 24, pp. 1094-1101. , COI: 1:CAS:528:DC%2BC3sXkt1Kmsrk%3D, PID: 23522654; Looser, V., Bruhlmann, B., Bumbak, F., Stenger, C., Costa, M., Camattari, A., Fotiadis, D., Kovar, K., Cultivation strategies to enhance productivity of Pichia pastoris: a review (2015) Biotechnol Adv, 33, pp. 1177-1193. , COI: 1:STN:280:DC%2BC2MfovVOisQ%3D%3D, PID: 26027890; Cregg, J.M., Tolstorukov, I., Kusari, A., Sunga, J., Madden, K., Chappell, T., Expression in the yeast Pichia pastoris (2009) Methods Enzymol, 13, pp. 169-189. , COI: 1:CAS:528:DC%2BC3cXmt12jtw%3D%3D; Peña, D.A., Gasser, B., Zanghellini, J., Steiger, M.G., Mattanovich, D., Metabolic engineering of Pichia pastoris (2018) Metab Eng, 50, pp. 2-15. , PID: 29704654, COI: 1:CAS:528:DC%2BC1cXovVajs7o%3D; Barrigón, J.M., Montesinos, J.L., Valero, F., Searching the best operational strategies for Rhizopus oryzae lipase production in Pichia pastoris Mut+ phenotype: Methanol limited or methanol non-limited fed-batch cultures? (2013) Biochem Eng J, 75, pp. 47-54. , COI: 1:CAS:528:DC%2BC3sXntV2gs7k%3D; Barrigon, J.M., Valero, F., Montesinos, J.L., A macrokinetic model-based comparative meta-analysis of recombinant protein production by Pichia pastoris under AOX1 promoter (2015) Biotechnol Bioeng, 112, pp. 1132-1145. , COI: 1:CAS:528:DC%2BC2MXms1Kis78%3D, PID: 25546846; Ponte, X., Montesinos-Seguí, J.L., Valero, F., Bioprocess efficiency in Rhizopus oryzae lipase production by Pichia pastoris under the control of PAOX1 is oxygen tension dependent (2016) Process Biochem, 51, pp. 1954-1963. , COI: 1:CAS:528:DC%2BC28XhsVeltrrP; Ponte, X., Barrigón, J.M., Maurer, M., Mattanovich, D., Valero, F., Montesinos-Seguí, J.L., Towards optimal substrate feeding for heterologous protein production in Pichia pastoris (Komagataella spp) fed-batch processes under PAOX1 control: a modeling aided approach (2018) J Chem Technol Biotechnol, 93, pp. 3208-3218. , COI: 1:CAS:528:DC%2BC1cXhtVGit7fF; Vogl, T., Glieder, A., Regulation of Pichia pastoris promoters and its consequences for protein production (2013) N Biotechnol, 30, pp. 385-404. , COI: 1:CAS:528:DC%2BC38Xhslyntr%2FP, PID: 23165100; Heyland, J., Fu, J., Blank, L.M., Schmid, A., Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production (2010) Biotechnol Bioeng, 107, pp. 357-368. , COI: 1:CAS:528:DC%2BC3cXpvV2ntLg%3D, PID: 20552674; Çalık, P., Ata, Ö., Güneş, H., Massahi, A., Boy, E., Keskin, A., Örtürk, S., Özdamar, T.H., Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters (2015) Biochem Eng J, 95, pp. 20-36. , COI: 1:CAS:528:DC%2BC2cXitV2gtbbM; Hartner, F.S., Ruth, C., Langenegger, D., Johnson, S.N., Hyka, P., Lin-Cereghino, G.P., Lin-Cereghino, J., Glieder, A., Promoter library designed for fine-tuned gene expression in Pichia pastoris (2008) Nucleic Acids Res, 36, p. e76. , PID: 18539608, COI: 1:CAS:528:DC%2BD1cXosVOgs70%3D; Berrios, J., Flores, M.O., Díaz-Barrera, A., Altamirano, C., Martínez, I., Cabrera, Z., A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation (2017) J Ind Microbiol Biotechnol, 44, pp. 407-411. , COI: 1:CAS:528:DC%2BC2sXhtVChsQ%3D%3D, PID: 28035480; Tschopp, J.F., Brust, P.F., Cregg, J.M., Stillman, C.A., Gingeras, T.R., Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris (1987) Nucleic Acids Res, 15, pp. 3859-3876. , COI: 1:CAS:528:DyaL2sXktlChu7s%3D, PID: 3108861; Portela, R.M.C., Vogl, T., Ebner, K., Oliveira, R., Glieder, A., Pichia pastoris Alcohol Oxidase 1 (AOX1) core promoter engineering by high resolution systematic mutagenesis (2018) Biotechnol J, 13. , PID: 29125227, COI: 1:CAS:528:DC%2BC2sXhvVentrrJ; Rajamanickam, V., Metzger, K., Schmid, C., Spadiut, O., A novel bi-directional promoter system allows tunable recombinant protein production in Pichia pastoris (2017) Microb Cell Fact, 16, p. 152. , PID: 28903770, COI: 1:CAS:528:DC%2BC1cXitVOnsr%2FJ; Prielhofer, R., Reichinger, M., Wagner, N., Claes, K., Kiziak, C., Gasser, B., Mattanovich, D., Superior protein titers in half the fermentation time: Promoter and process engineering for the glucose-regulated GTH1 promoter of Pichia pastoris (2018) Biotechnol Bioeng, 115, pp. 2479-2488. , COI: 1:CAS:528:DC%2BC1cXhsVGrsLfK, PID: 30016537; Landes, N., Gasser, B., Vorauer-Uhl, K., Lhota, G., Mattanovich, D., Maurer, M., The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris (2016) Biotechnol Bioeng, 113, pp. 2633-2643. , COI: 1:CAS:528:DC%2BC28XhtFamt7jO, PID: 27345605; Wang, J., Zhang, T., Li, Y., Li, L., Wang, Y., Yang, B., Wang, Y., High-level expression of Thermomyces dupontii thermo-alkaline lipase in Pichia pastoris under the control of different promoters (2019) Biotech, 9, p. 33; Shirvani, R., Yazdanpanah, S., Barshan-tashnizi, M., Shahali, M., A Novel Methanol-Free Platform for Extracellular Expression of rhGM-CSF in Pichia pastoris (2019) Mol Biotechnol, 61, pp. 521-527. , COI: 1:CAS:528:DC%2BC1MXovVOkt74%3D, PID: 31054084; Vogl, T., Fischer, J.E., Hyden, P., Wasmayer, R., Sturmberger, L., Glieder, A., Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris (2020) AMB Express., 10, p. 38. , COI: 1:CAS:528:DC%2BB3cXltV2ktL0%3D, PID: 32100120; Liu, J., Han, Q., Cheng, Q., Chen, Y., Wang, R., Li, X., Liu, Y., Yan, D., Efficient expression of human lysozyme through the increased gene dosage and co-expression of transcription factor Hac1p in Pichia pastoris (2020) Curr Microbiol, 77, pp. 846-854. , COI: 1:CAS:528:DC%2BB3cXotFGrtw%3D%3D, PID: 31932996; Ben Azoun, S., Belhaj, A.E., Göngrich, R., Gasser, B., Kallel, H., Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris (2016) Microb Biotechnol, 9, pp. 355-368. , COI: 1:CAS:528:DC%2BC28XmtF2ku7k%3D, PID: 26880068; Yang, J., Lu, Z., Chen, J., Chu, P., Cheng, Q., Liu, J., Ming, F., Zhang, L., Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris (2016) Appl Microbiol Biotechnol, 100, pp. 5453-5465. , COI: 1:CAS:528:DC%2BC28XisFyhurs%3D, PID: 26883349; Vogl, T., Sturmberger, L., Kickenweiz, T., Wasmayer, R., Schmid, C., Hatzl, A.M., Gerstmann, M.A., Glieder, A., A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris (2016) ACS Synth Biol, 5, pp. 172-186. , COI: 1:CAS:528:DC%2BC2MXhvVyit7nL, PID: 26592304; Cámara, E., Landes, N., Albiol, J., Gasser, B., Mattanovich, D., Ferrer, P., Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris (2017) Sci Rep, 7, p. 44302. , PID: 28295011; Cámara, E., Monforte, S., Albiol, J., Ferrer, P., Deregulation of methanol metabolism reverts transcriptional limitations of recombinant Pichia pastoris (Komagataella spp) with multiple expression cassettes under control of the AOX1 promoter (2019) Biotechnol Bioeng, 116, pp. 1710-1720. , PID: 30712270, COI: 1:CAS:528:DC%2BC1MXjtVyitrw%3D; Krause, M., Ukkonen, K., Haataja, T., Ruottinen, M., Glumoff, T., Neubauer, A., Neubauer, P., Vasala, A., A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures (2010) Microb Cell Fact, 9, p. 11. , PID: 20167131, COI: 1:CAS:528:DC%2BC3cXitl2qtbo%3D; Panula-Perälä, J., Šiurkus, J., Vasala, A., Wilmanowski, R., Casteleijn, M.G., Neubauer, P., Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks (2008) Microb Cell Fact, 7, p. 31. , PID: 19017379, COI: 1:CAS:528:DC%2BD1cXhsFWnu7zP; Nieto-Taype, M.A., Garcia-Ortega, X., Albiol, J., Montesinos-Seguí, J.L., Valero, F., Continuous cultivation as a tool toward the rational bioprocess development with Pichia Pastoris cell factory (2020) Front Bioeng Biotechnol, 8, p. 632. , PID: 32671036; Potvin, G., Ahmad, A., Zhang, Z., Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review (2012) Biochem Eng J, 64, pp. 91-105. , COI: 1:CAS:528:DC%2BC38XlvFeisLw%3D; Rebnegger, C., Graf, A.B., Valli, M., Steiger, M.G., Gasser, B., Maurer, M., Mattanovich, D., In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response (2014) Biotechnol J, 9, pp. 511-525. , COI: 1:CAS:528:DC%2BC2cXmtlWksw%3D%3D, PID: 24323948; Garcia-Ortega, X., Adelantado, N., Ferrer, P., Montesinos, J.L., Valero, F., A step forward to improve recombinant protein production in Pichia pastoris: from specific growth rate effect on protein secretion to carbon-starving conditions as advanced strategy (2016) Process Biochem, 51, pp. 681-691. , COI: 1:CAS:528:DC%2BC28XktVCjt7Y%3D; Nieto-Taype, M.A., Garrigós-Martínez, J., Sánchez-Farrando, M., Valero, F., Garcia-Ortega, X., Montesinos-Seguí, J.L., Rationale-based selection of optimal operating strategies and gene dosage impact on recombinant protein production in Komagataella phaffii (Pichia pastoris) (2020) Microb Biotechnol, 13, pp. 315-327. , COI: 1:CAS:528:DC%2BB3cXjtVahsbs%3D, PID: 31657146; Garrigós-Martínez, J., Nieto-Taype, M.A., Gasset-Franch, A., Montesinos-Seguí, J.L., Garcia-Ortega, X., Valero, F., Specific growth rate governs AOX1 gene expression, affecting the production kinetics of Pichia pastoris (Komagataella phaffii) PAOX1-driven recombinant producer strains with different target gene dosage (2019) Microb Cell Fact, 18, p. 187. , PID: 31675969, COI: 1:CAS:528:DC%2BC1MXitFGgtrjP; García-Ortega, X., Cámara, E., Ferrer, P., Albiol, J., Montesinos-Seguí, J.L., Valero, F., Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter Where do we stand? (2019) New Biotechnol., 53, pp. 24-34. , COI: 1:CAS:528:DC%2BC1MXht1Gitr3I; De Macedo, R.J., Garcia-Ortega, X., Montesinos-Seguí, J.L., Guimaraes Freire, D.M., Valero, F., Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris (2019) Biochem Eng J, 147, pp. 39-47. , COI: 1:CAS:528:DC%2BC1MXntVGms7s%3D; Canales, C., Altamirano, C., Berrios, J., Effect of dilution rate and methanol-glycerol mixed feeding on heterologous Rhizopus oryzae lipase production with Pichia pastoris Mut+ phenotype in continuous culture (2015) Biotechnol Prog, 31, pp. 707-714. , COI: 1:CAS:528:DC%2BC2MXhtVaqtrvE, PID: 25740724; Fischer, J.E., Hatzl, A.-M., Weninger, A., Schmid, C., Glieder, A., Methanol Independent Expression by Pichia Pastoris Employing De-repression Technologies (2019) J Vis Exp.; Vogl, T., Ruth, C., Pitzer, J., Kickenweiz, T., Glieder, A., Synthetic core promoters for Pichia pastoris (2014) ACS Synth Biol, 3, pp. 188-191. , COI: 1:CAS:528:DC%2BC3sXhslWlsrzE, PID: 24187969; Weis, R., Luiten, R., Skranc, W., Schwab, H., Wubbolts, M., Glieder, A., Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena (2004) FEMS Yeast Res, 5, pp. 179-189. , COI: 1:CAS:528:DC%2BD2cXos1aqtbs%3D, PID: 15489201; Schwarzhans, J.P., Wibberg, D., Winkler, A., Luttermann, T., Kalinowski, J., Friehs, K., Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization (2016) Microb Cell Fact, 15, p. 84. , PID: 27206580, COI: 1:CAS:528:DC%2BC2sXnsVGlsrk%3D; Delic, M., Göngrich, R., Mattanovich, D., Gasser, B., Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins (2014) Antioxid Redox Signal, 21, pp. 414-437. , COI: 1:CAS:528:DC%2BC2cXhtVymtb3I, PID: 24483278; Young, C.L., Yuraszeck, T., Robinson, A.S., Decreased secretion and unfolded protein response upregulation (2011) Methods Enzymol, 491, pp. 235-260. , COI: 1:CAS:528:DC%2BC3MXlt1Wjtbw%3D, PID: 21329804; Garcia-Ortega, X., Ferrer, P., Montesinos, J.L., Valero, F., Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter (2013) Biochem Eng J, 79, pp. 172-181. , COI: 1:CAS:528:DC%2BC3sXhsFOnsrnO; Theron, C.W., Vandermies, M., Telek, S., Steels, S., Fickers, P., Comprehensive comparison of Yarrowia lipolytica and Pichia pastoris for production of Candida antarctica lipase B (2020) Sci Rep, 10, pp. 1-9. , COI: 1:CAS:528:DC%2BB3cXjslOltbw%3D; Puxbaum, V., Mattanovich, D., Gasser, B., Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris (2015) Appl Microbiol Biotechnol, 99, pp. 2925-2938. , COI: 1:CAS:528:DC%2BC2MXjs1Khsrc%3D, PID: 25722021; Zhu, T., Guo, M., Zhuang, Y., Chu, J., Zhang, S., Understanding the effect of foreign gene dosage on the physiology of Pichia pastoris by transcriptional analysis of key genes (2011) Appl Microbiol Biotechnol, 89, pp. 1127-1135. , COI: 1:CAS:528:DC%2BC3MXhs1Ghsb0%3D, PID: 20981418; Raschmanová, H., Zamora, I., Borčinová, M., Meier, P., Weninger, A., Mächler, D., Glieder, A., Kovar, K., Single-cell approach to monitor the unfolded protein response during biotechnological processes with Pichia pastoris (2019) Front Microbiol, 10, p. 335. , PID: 30873140; Sha, C., Yu, X.W., Lin, N.X., Zhang, M., Xu, Y., Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase (2013) Enzyme Microb Technol., 53, pp. 438-443. , COI: 1:CAS:528:DC%2BC3sXhs1WksL7N, PID: 24315648; Vogl, T., Gebbie, L., Palfreyman, R.W., Speight, R., Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris (2018) Appl Environ Microbiol, 84, pp. e02712-e2717. , PID: 29330186; Lin-Cereghino, J., Wong, W.W., Xiong, S., Giang, W., Luong, L.T., Vu, J., Johnson, S.D., Lin-Cereghino, G.P., Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris (2005) Biotechniques, 38, p. 44. , COI: 1:CAS:528:DC%2BD2MXptV2mug%3D%3D, PID: 15679083; Näätsaari, L., Mistlberger, B., Ruth, C., Hajek, T., Hartner, F.S., Glieder, A., Deletion of the Pichia pastoris ku70 homologue facilitates platform strain generation for gene expression and synthetic biology (2012) PLoS ONE, 7. , PID: 22768112, COI: 1:CAS:528:DC%2BC38XpvVCnsb4%3D; Krainer, F.W., Gerstmann, M.A., Darnhofer, B., Birner-Gruenberger, R., Glieder, A., Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris (2016) J Biotechnol, 233, pp. 181-189. , COI: 1:CAS:528:DC%2BC28Xht1aitb3P, PID: 27432633; Cos, O., Serrano, A., Montesinos, J.L., Ferrer, P., Cregg, J.M., Valero, F., Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures (2005) J Biotechnol, 116, pp. 321-335. , PID: 15748759, COI: 1:CAS:528:DC%2BD2MXhvVers7o%3D; Garcia-Ortega, X., Valero, F., Montesinos-Seguí, J.L., Physiological state as transferable operating criterion to improve recombinant protein production in Pichia pastoris through oxygen limitation (2017) J Chem Technol Biotechnol, 92, pp. 2573-2582. , COI: 1:CAS:528:DC%2BC2sXmtVyiu78%3D; Krainer, F.W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., Glieder, A., Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway (2012) Microb Cell Fact, 11, p. 22. , COI: 1:CAS:528:DC%2BC38XkvFert7g%3D, PID: 22330134; Tomàs-Gamisans, M., Ferrer, P., Albiol, J., Fine-tuning the P pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources (2018) Microb Biotechnol., 11, pp. 224-237. , PID: 29160039, COI: 1:CAS:528:DC%2BC1cXjtFCmsQ%3D%3D
PY - 2021
Y1 - 2021
N2 - Background: Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. Results: Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. Conclusions: As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest. © 2021, The Author(s).
AB - Background: Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. Results: Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. Conclusions: As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest. © 2021, The Author(s).
KW - Bioprocess development
KW - Expression system characterisation
KW - Komagataella phaffii (Pichia pastoris)
KW - Methanol-free bioprocesses
KW - Promoter regulation
KW - Recombinant protein production
KW - lipase B
KW - methanol
KW - recombinant protein
KW - Article
KW - biomass
KW - Candida antarctica
KW - controlled study
KW - endoplasmic reticulum
KW - fungus culture
KW - fungus growth
KW - Komagataella pastoris
KW - nonhuman
KW - protein expression
KW - unfolded protein response
KW - upregulation
U2 - 10.1186/s12934-021-01564-9
DO - 10.1186/s12934-021-01564-9
M3 - Article
C2 - 33757505
VL - 20
IS - 74
ER -