Abstract
Our goal in this work is to present some function spaces on the complex plane ℂ, X(ℂ), for which the quasiregular solutions of the Beltrami equation, ∂ f (z) = μ(z)∂ f (z), have first derivatives locally in X(ℂ), provided that the Beltrami coefficient μ belongs to X(ℂ). © Canadian Mathematical Society 2013.
Original language | English |
---|---|
Pages (from-to) | 1217-1235 |
Journal | Canadian Journal of Mathematics |
Volume | 65 |
DOIs | |
Publication status | Published - 1 Dec 2013 |
Keywords
- Beltrami equation
- Calderón- Zygmund operators
- Quasiregular mappings
- Sobolev spaces