Abstract
© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.
Original language | English |
---|---|
Article number | 113029 |
Journal | New Journal of Physics |
Volume | 17 |
Issue number | 11 |
DOIs | |
Publication status | Published - 9 Nov 2015 |
Keywords
- entanglement
- flux qubit
- quantum dot
- steady-state
- thermal machine