Atmospheric deposition, CO<inf>2</inf>, and change in the land carbon sink

M. Fernández-Martínez, S. Vicca, I. A. Janssens, P. Ciais, M. Obersteiner, M. Bartrons, J. Sardans, A. Verger, J. G. Canadell, F. Chevallier, X. Wang, C. Bernhofer, P. S. Curtis, D. Gianelle, T. Grünwald, B. Heinesch, A. Ibrom, A. Knohl, T. Laurila, B. E. LawJ. M. Limousin, B. Longdoz, D. Loustau, I. Mammarella, G. Matteucci, R. K. Monson, L. Montagnani, E. J. Moors, J. W. Munger, D. Papale, S. L. Piao, J. Peñuelas

    Research output: Contribution to journalArticleResearchpeer-review

    37 Citations (Scopus)


    © 2017 The Author(s). Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.
    Original languageEnglish
    Article number9632
    JournalScientific Reports
    Issue number1
    Publication statusPublished - 1 Dec 2017

    Fingerprint Dive into the research topics of 'Atmospheric deposition, CO<inf>2</inf>, and change in the land carbon sink'. Together they form a unique fingerprint.

    Cite this