Asymmetric hybrid silica nanomotors for capture and cargo transport: Towards a novel motion-based DNA sensor

Juliane Simmchen, Alejandro Baeza, Daniel Ruiz, Maria José Esplandiu, Maria Vallet-Regí

Research output: Contribution to journalArticleResearchpeer-review

67 Citations (Scopus)

Abstract

An innovative self-propelled nanodevice able to perform motion, cargo transport, and target recognition is presented. The system is based on a mesoporous motor particle, which is asymmetrically functionalized by the attachment of single-stranded DNA onto one of its faces, while catalase is immobilized on the other face. This enzyme allows catalytic decomposition of hydrogen peroxide to oxygen and water, giving rise to the driving force for the motion of the whole system. Moreover the motor particles are able to capture and transport cargo particles functionalized with a noncomplementary single-stranded DNA molecule, only if a specific oligonucleotide sequence is present in the media. Functionalization with characteristic oligonucleotide sequences in the system implies a potential for further developments for lab-on-chip devices with applications in biomedical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original languageEnglish
Pages (from-to)2053-2059
JournalSmall
Volume8
Issue number13
DOIs
Publication statusPublished - 9 Jul 2012

Keywords

  • catalytic nanomotors
  • fluorescence
  • hydrogen peroxide
  • self-assembly
  • sensors

Fingerprint

Dive into the research topics of 'Asymmetric hybrid silica nanomotors for capture and cargo transport: Towards a novel motion-based DNA sensor'. Together they form a unique fingerprint.

Cite this