TY - JOUR
T1 - Arabidopsis formaldehyde dehydrogenase: molecular properties of plant class III alcohol dehydrogenase provide further insights into the origins, structure and function of plant class P and liver class I alcohol dehydrogenases
AU - Martínez, M. Carmen
AU - Achkor, Hakima
AU - Persson, Bengt
AU - Fernández, M. Rosario
AU - Shafqat, Jawed
AU - Farrés, Jaume
AU - Jörnvall, Hans
AU - Parés, Xavier
PY - 1996/1/1
Y1 - 1996/1/1
N2 - A glutathione-dependent formaldehyde dehydrogenase (class III alcohol dehydrogenase) has been characterized from Arabidopsis thaliana. This plant enzyme exhibits kinetic and molecular properties in common with the class III forms from mammals, with a K(m) for S-hydroxymethylglutathione of 1.4 μM, an anodic electrophoretic mobility (pI: 5.3-5.6) and a cross-reaction with anti-(rat class III alcohol dehydrogenase) antibodies. The enzyme structure, deduced from the cDNA sequence, fits into the complex system of alcohol dehydrogenases and shows that all life forms share the class III protein type. The corresponding mRNA is 1.4 kb and present in all plant organs; a single copy of the gene is found in the genome. The class III structural variability is different from that of the ethanol-active enzyme types in both vertebrates (class I) and plants (class P), although class P conserves more of the class III properties than class I does. Also the enzymatic properties differ between the two ethanol-active classes. Active-site variability and exchanges at essential residues (Leu/Gly57, Asp/Arg115) may explain the distinct kinetics. These patterns are consistent with two different metabolic roles for the ethanol-active enzymes, a more constant function, reduction of acetaldehyde during hypoxia, for class P, and a more variable function, the detoxication of alcohols and participation in metabolic conversions, for class I. A sequence motif, Pro-Xaa-Ile/Val-Xaa-Gly-His-Glu-Xaa-Xaa-Gly, common to all medium-chain alcohol dehydrogenases is defined.
AB - A glutathione-dependent formaldehyde dehydrogenase (class III alcohol dehydrogenase) has been characterized from Arabidopsis thaliana. This plant enzyme exhibits kinetic and molecular properties in common with the class III forms from mammals, with a K(m) for S-hydroxymethylglutathione of 1.4 μM, an anodic electrophoretic mobility (pI: 5.3-5.6) and a cross-reaction with anti-(rat class III alcohol dehydrogenase) antibodies. The enzyme structure, deduced from the cDNA sequence, fits into the complex system of alcohol dehydrogenases and shows that all life forms share the class III protein type. The corresponding mRNA is 1.4 kb and present in all plant organs; a single copy of the gene is found in the genome. The class III structural variability is different from that of the ethanol-active enzyme types in both vertebrates (class I) and plants (class P), although class P conserves more of the class III properties than class I does. Also the enzymatic properties differ between the two ethanol-active classes. Active-site variability and exchanges at essential residues (Leu/Gly57, Asp/Arg115) may explain the distinct kinetics. These patterns are consistent with two different metabolic roles for the ethanol-active enzymes, a more constant function, reduction of acetaldehyde during hypoxia, for class P, and a more variable function, the detoxication of alcohols and participation in metabolic conversions, for class I. A sequence motif, Pro-Xaa-Ile/Val-Xaa-Gly-His-Glu-Xaa-Xaa-Gly, common to all medium-chain alcohol dehydrogenases is defined.
KW - Arabidopsis enzyme structure
KW - Ethanol dehydrogenase
KW - Formaldehyde dehydrogenase
KW - Functional convergence
KW - Parallel evolution
U2 - 10.1111/j.1432-1033.1996.00849.x
DO - 10.1111/j.1432-1033.1996.00849.x
M3 - Article
SN - 0014-2956
VL - 241
SP - 849
EP - 857
JO - European Journal of Biochemistry
JF - European Journal of Biochemistry
IS - 3
ER -