Projects per year
Abstract
© 2019 London Mathematical Society We study the distance in the Zygmund class (Formula presented.) to the subspace (Formula presented.) of functions with distributional derivative with bounded mean oscillation. In particular, we describe the closure of (Formula presented.) in the Zygmund seminorm. We also generalise this result to Zygmund measures on (Formula presented.). Finally, we apply the techniques developed in the article to characterise the closure of the subspace of functions in (Formula presented.) that are also in the classical Sobolev space (Formula presented.), for (Formula presented.).
Original language | English |
---|---|
Journal | Journal of the London Mathematical Society |
DOIs | |
Publication status | Published - 1 Jan 2019 |
Keywords
- 26A16
- 26A24 (primary)
Fingerprint
Dive into the research topics of 'Approximation in the Zygmund class'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Aspectos probabilísticos y geométricos de la teoría de funciones
Nicolau Nos, A., Gonzalez Llorente, J., Arroyo Garcia, A. R., Donaire Benito, J. J., Soler Gibert, O., González Fuentes, M. J., Levi, M., Limani, A. & Macia Medina, V. J.
Ministerio de Ciencia e Innovación (MICINN)
1/01/18 → 30/09/22
Project: Research Projects and Other Grants