Angiotensin II type 1/adenosine A <inf>2A</inf> receptor oligomers: A novel target for tardive dyskinesia

Paulo A. De Oliveira, James A.R. Dalton, Marc López-Cano, Adrià Ricarte, Xavier Morató, Filipe C. Matheus, Andréia S. Cunha, Christa E. Müller, Reinaldo N. Takahashi, Víctor Fernández-Dueñas, Jesús Giraldo, Rui D. Prediger, Francisco Ciruela

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)

Abstract

© 2017 The Author(s). Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.
Original languageEnglish
Article number1857
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 1 Dec 2017

Fingerprint Dive into the research topics of 'Angiotensin II type 1/adenosine A <inf>2A</inf> receptor oligomers: A novel target for tardive dyskinesia'. Together they form a unique fingerprint.

Cite this