An enriched European eel transcriptome sheds light upon host-pathogen interactions with Vibrio vulnificus

Agnès Callol, Felipe E. Reyes-López, Francisco J. Roig, Giles Goetz, Frederick W. Goetz, Carmen Amaro, Simon A. MacKenzie

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)

Abstract

© 2015 Callol et al. Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen- associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome.We obtained more than 2x10<sup>6</sup> reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA1<inf>3</inf>) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA1<inf>3</inf> were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immuneresponse is rtxA1<inf>3</inf>-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue. Copyright:
Original languageEnglish
Article numbere0133328
JournalPLoS ONE
Volume10
Issue number7
DOIs
Publication statusPublished - 24 Jul 2015

Fingerprint

Dive into the research topics of 'An enriched European eel transcriptome sheds light upon host-pathogen interactions with Vibrio vulnificus'. Together they form a unique fingerprint.

Cite this