Alkali metal cation transport and homeostasis in yeasts

Joaquín Ariño, José Ramos, Hana Sychrová

Research output: Contribution to journalReview articleResearchpeer-review

185 Citations (Scopus)

Abstract

The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K+ and Na+, is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K+ transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na+ can be tolerated due to the existence of an Na+, K+-ATPase and an Na +, K+/H+-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants. Copyright © 2010, American Society for Microbiology. All Rights Reserved.
Original languageEnglish
Pages (from-to)95-120
JournalMicrobiology and Molecular Biology Reviews
Volume74
Issue number1
DOIs
Publication statusPublished - 1 Mar 2010

Fingerprint Dive into the research topics of 'Alkali metal cation transport and homeostasis in yeasts'. Together they form a unique fingerprint.

Cite this