Airborne limonene confers limited thermotolerance to Quercus ilex

Joan Llusià, Josep Peñuelas, Dolores Asensio, Sergi Munné-Bosch

    Research output: Contribution to journalArticleResearchpeer-review

    28 Citations (Scopus)

    Abstract

    The purpose of the study was to test the possible and controversial thermotolerance role of monoterpene production and emission and the related responses of antioxidants. Quercus ilex seedlings were exposed to a ramp of temperatures of 5°C steps from 25 to 50°C growing with and without limonene fumigation (7.5 μll-1). Net photosynthetic rates, maximal photochemical efficiency of PSII (Fv/Fm), oxidation state of ascorbic acid, and lipid peroxidation estimated by malondialdehyde concentrations of limonene-fumigated (LF) plants did not significantly differ from control (C) plants. No consistent changes in emissions of the other monoterpenes, α-pinene, β-phellandrene, β-pinene or β-myrcene were found. However, slight differences were found in the concentration of antioxidants. The amounts of α-tocopherol did not change or even tended to decrease at high temperatures in LF plants whereas they tended to increase by approximately 60% at 45 and 50°C relative to 25°C in C plants. Ascorbic acid reached its maximum concentration only at 45°C in LF plants whereas it reached its maximum at 35°C in C plants. β-Carotene did not decrease at high temperatures in LF plants whereas it decreased by approximately 15% at 45-50°C in C plants. Brown pigment index (BPI), an optical indicator of tissue oxidative processes, was lower in LF plants than in C plants. The photochemical reflectance index (PRI), an optical indicator of photosynthetic light use efficiency, was higher for LF plants than for C plants at elevated temperatures. Visual leaf damage (browning) tended to be less in LF plants than in C plans although not significantly (26.5 ± 8.5 versus 16.2 ± 4.8%). These results show that limonene does not confer clear and strong thermotolerance but might have some minor role. These results are in agreement with previous indications of weaker thermotolerance effect of monoterpenes than of isoprene.
    Original languageEnglish
    Pages (from-to)40-48
    JournalPhysiologia Plantarum
    Volume123
    DOIs
    Publication statusPublished - 1 Jan 2005

    Fingerprint Dive into the research topics of 'Airborne limonene confers limited thermotolerance to Quercus ilex'. Together they form a unique fingerprint.

    Cite this