Affecting factors and recent improvements of the photochemical reflectance index (pri) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies

Chao Zhang, Iolanda Filella, Martín F. Garbulsky, Josep Peñuelas

    Research output: Contribution to journalReview articleResearchpeer-review

    57 Citations (Scopus)

    Abstract

    © 2016 by the authors. Accurately assessing terrestrial gross primary productivity (GPP) is crucial for characterizing the climate-carbon cycle. Remotely sensing the photochemical reflectance index (PRI) across vegetation functional types and spatiotemporal scales has received increasing attention for monitoring photosynthetic performance and simulating GPP over the last two decades. The factors confounding PRI variation, especially on long timescales, however, require the improvement of PRI understanding to generalize its use for estimating carbon uptake. In this review, we summarize the most recent publications that have reported the factors affecting PRI variation across diurnal and seasonal scales at foliar, canopy and ecosystemic levels; synthesize the reported correlations between PRI and ecophysiological variables, particularly with radiation-use efficiency (RUE) and net carbon uptake; and analyze the improvements in PRI implementation. Long-term variation of PRI could be attributed to changes in the size of constitutive pigment pools instead of xanthophyll de-epoxidation, which controls the facultative short-term changes in PRI. Structural changes at canopy and ecosystemic levels can also affect PRI variation. Our review of the scientific literature on PRI suggests that PRI is a good proxy of photosynthetic efficiency at different spatial and temporal scales. Correcting PRI by decreasing the influence of physical or physiological factors on PRI greatly strengthens the relationships between PRI and RUE and GPP. Combining PRI with solar-induced fluorescence (SIF) and optical indices for green biomass offers additional prospects.
    Original languageEnglish
    Article number677
    JournalRemote Sensing
    Volume8
    Issue number9
    DOIs
    Publication statusPublished - 1 Jan 2016

    Keywords

    • Affecting factors
    • Gross primary productivity (GPP)
    • Photochemical reflectance index (PRI)
    • Radiation-use efficiency (RUE)
    • Spatiotemporal scales

    Fingerprint

    Dive into the research topics of 'Affecting factors and recent improvements of the photochemical reflectance index (pri) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies'. Together they form a unique fingerprint.

    Cite this