Addressing Mobility in RPL with Position Assisted Metrics

Marc Barcelo, Alejandro Correa, Jose Lopez Vicario, Antoni Morell, Xavier Vilajosana

Research output: Contribution to journalArticleResearchpeer-review

39 Citations (Scopus)

Abstract

© 2001-2012 IEEE. Mobility is still an open challenge in wireless sensor networks (WSNs). Energy efficient routing strategies designed for static WSNs, such as routing protocol for low-power and lossy networks (RPL), generally have a slow response to topology changes. Moreover, their high signalling cost to keep up-to-date routes in the presence of mobile nodes makes them inefficient in these scenarios. In this paper, we introduce Kalman positioning RPL (KP-RPL), a novel routing strategy for WSNs with both static and mobile nodes, based on RPL. The objective of KP-RPL is to provide robust and reliable routing, considering the positioning inaccuracies and node disconnections that arise in real-life WSNs. This considers the original RPL for the communication among static nodes and position-based routing for mobile nodes, which use a novel RPL metric that combines Kalman positioning and blacklisting. The simulation results show that the reliability and the robustness of the network in harsh conditions are enhanced compared with geographical routing. Moreover, KP-RPL reduces the density and the number of simultaneously active anchor nodes for positioning. As a result, the infrastructure cost is lower, and the network lifetime is extended.
Original languageEnglish
Article number7329917
Pages (from-to)2151-2161
JournalIEEE Sensors Journal
Volume16
Issue number7
DOIs
Publication statusPublished - 1 Apr 2016

Keywords

  • Kalman Filtering
  • Mobility
  • Routing
  • RPL
  • Wireless Sensor Network

Fingerprint Dive into the research topics of 'Addressing Mobility in RPL with Position Assisted Metrics'. Together they form a unique fingerprint.

Cite this