TY - JOUR
T1 - Activation of CCR5 by chemokines involves an aromatic cluster between transmembrane helices 2 and 3
AU - Govaerts, Cédric
AU - Bondue, Antoine
AU - Springael, Jean Yves
AU - Olivella, Mireia
AU - Deupi, Xavier
AU - Le Poul, Emmanuel
AU - Wodak, Shoshana J.
AU - Parmentier, Marc
AU - Pardo, Leonardo
AU - Blanpain, Cédric
PY - 2003/1/17
Y1 - 2003/1/17
N2 - CCR5 is a G protein-coupled receptor responding to four natural agonists, the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1α, MIP-1β, and monocyte chemotactic protein (MCP)-2, and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We have previously identified a structural motif in the second transmembrane helix of CCR5, which plays a crucial role in the mechanism of receptor activation. We now report the specific role of aromatic residues in helices 2 and 3 of CCR5 in this mechanism. Using site-directed mutagenesis and molecular modeling in a combined approach, we demonstrate that a cluster of aromatic residues at the extracellular border of these two helices are involved in chemokine-induced activation. These aromatic residues are involved in interhelical interactions that are key for the conformation of the helices and govern the functional response to chemokines in a ligand-specific manner. We therefore suggest that transmembrane helices 2 and 3 contain important structural elements for the activation mechanism of chemokine receptors, and possibly other related receptors as well.
AB - CCR5 is a G protein-coupled receptor responding to four natural agonists, the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1α, MIP-1β, and monocyte chemotactic protein (MCP)-2, and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We have previously identified a structural motif in the second transmembrane helix of CCR5, which plays a crucial role in the mechanism of receptor activation. We now report the specific role of aromatic residues in helices 2 and 3 of CCR5 in this mechanism. Using site-directed mutagenesis and molecular modeling in a combined approach, we demonstrate that a cluster of aromatic residues at the extracellular border of these two helices are involved in chemokine-induced activation. These aromatic residues are involved in interhelical interactions that are key for the conformation of the helices and govern the functional response to chemokines in a ligand-specific manner. We therefore suggest that transmembrane helices 2 and 3 contain important structural elements for the activation mechanism of chemokine receptors, and possibly other related receptors as well.
U2 - https://doi.org/10.1074/jbc.M205685200
DO - https://doi.org/10.1074/jbc.M205685200
M3 - Article
VL - 278
SP - 1892
EP - 1903
ER -