Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model

Marta Monguió-Tortajada, Cristina Prat-Vidal, Daina Martínez-Falguera, Albert Teis, Carolina Soler-Botija, Yvan Courageux, Micaela Munizaga-Larroudé, Miriam Morón-Font, Antoni Bayés-Genís, Francesc Enric Borràs i Serres, F. Rudilla, Carolina Gálvez-Montón

Research output: Contribution to journalArticleResearchpeer-review

35 Citations (Scopus)

Abstract

Rationale: Extracellular vesicles (EVs) from mesenchymal stromal cell (MSC) are a potential therapy for cardiac healing after myocardial infarction (MI). Nevertheless, neither their efficient administration nor therapeutic mechanisms are fully elucidated. Here, we evaluate the preclinical efficacy of a tissue engineering approach to locally deliver porcine cardiac adipose tissue MSC-EV (cATMSC-EV) in an acute MI pig model. Methods: After MI by permanent ligation of the coronary artery, pigs (n = 24) were randomized to Untreated or treated groups with a decellularised pericardial scaffold filled with peptide hydrogel and cATMSC-EV purified by size exclusion chromatography (EV-Treated group) or buffer (Control group), placed over the post-infarcted myocardium. Results: After 30 days, cardiac MRI showed an improved cardiac function in EV-Treated animals, with significantly higher right ventricle ejection fraction (+20.8% in EV-Treated; p = 0.026), and less ventricle dilatation, indicating less myocardial remodelling. Scar size was reduced, with less fibrosis in the distal myocardium (-42.6% Col I in EV-Treated vs Untreated; p = 0.03), a 2-fold increase in vascular density (EV-Treated; p = 0.019) and less CCL2 transcription in the infarct core. EV-treated animals had less macrophage infiltration in the infarct core (-31.7% of CD163 + cells/field in EV-Treated; p = 0.026), but 5.8 times more expressing anti-inflammatory CD73 (p = 0.015). Systemically, locally delivered cATMSC-EV also triggered a systemic effect, doubling the circulating IL-1ra (p = 0.01), and reducing the PBMC rush 2d post-MI, the TNFα and GM-CSF levels at 30d post-MI, and modulating the CD73 + and CCR2 + monocyte populations, related to immunomodulation and fibrosis modulation. Conclusions: These results highlight the potential of cATMSC-EV in modulating hallmarks of ischemic injury for cardiac repair after MI.
Original languageEnglish
Pages (from-to)4656-4670
Number of pages15
JournalTheranostics
Volume12
Issue number10
DOIs
Publication statusPublished - 2022

Keywords

  • Extracellular vesicles
  • Cardiac fibrosis
  • Ventricular remodeling
  • Mesenchymal stromal/stem cells
  • Myocardial infarction
  • Swine/pig model
  • Immunomodulation

Fingerprint

Dive into the research topics of 'Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model'. Together they form a unique fingerprint.

Cite this