A version of the baer splitting problem for noetherian rings

Cornelius Greither, Dolors Herbera, Jan Trlifaj

Research output: Chapter in BookChapterResearchpeer-review

Abstract

We call a module M over a commutative noetherian ring R quasi-Baer provided that Ext1 R(M,T) = 0 for each locally artinian (= semiartinian) module T. We prove that all quasi-Baer modules are projective in case R has finite Krull dimension, or R is of cardinality < אω. © de Gruyter 2008.
Original languageEnglish
Title of host publicationModels, Modules and Abelian Groups: In Memory of A. L. S. Corner
Pages375-383
Number of pages8
DOIs
Publication statusPublished - 10 Dec 2008

Keywords

  • Commutative noetherian rings
  • Locally artinian modules
  • Mittag-leffler modules
  • Quasi-Baer modules

Fingerprint

Dive into the research topics of 'A version of the baer splitting problem for noetherian rings'. Together they form a unique fingerprint.

Cite this