Abstract
We call a module M over a commutative noetherian ring R quasi-Baer provided that Ext1 R(M,T) = 0 for each locally artinian (= semiartinian) module T. We prove that all quasi-Baer modules are projective in case R has finite Krull dimension, or R is of cardinality < אω. © de Gruyter 2008.
Original language | English |
---|---|
Title of host publication | Models, Modules and Abelian Groups: In Memory of A. L. S. Corner |
Pages | 375-383 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 10 Dec 2008 |
Keywords
- Commutative noetherian rings
- Locally artinian modules
- Mittag-leffler modules
- Quasi-Baer modules