A unifying conceptual model for the environmental responses of isoprene emissions from plants

Catherine Morfopoulosl, Iain C. Prentice, Trevor F. Keenan, Pierre Friedlingstein, Belinda E. Medlyn, Josep Peñuelas, Malcolm Possell

    Research output: Contribution to journalArticleResearchpeer-review

    33 Citations (Scopus)


    Background and Aims Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical and require separate responses to different drivers. This study sets out to find a simpler, unifying principle. Methods A simple model is presented based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. This model's ability to account for key features in a variety of experimental data sets is assessed. Key results The model simultaneously predicts the fundamental responses observed in short-term experiments, namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with increasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity. ConclusionsAsimple modelwas used to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers aswell as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve globalscale modelling of vegetation isoprene emission. © The Author 2013.
    Original languageEnglish
    Pages (from-to)1223-1238
    JournalAnnals of Botany
    Issue number7
    Publication statusPublished - 1 Nov 2013


    • Carbon dioxide
    • Electron transport
    • Isoprene
    • Isoprene emission
    • Modelling
    • Photosynthesis
    • Temperature
    • Volatile organic compounds.


    Dive into the research topics of 'A unifying conceptual model for the environmental responses of isoprene emissions from plants'. Together they form a unique fingerprint.

    Cite this