TY - JOUR
T1 - A pharmacokinetic study of oclacitinib maleate in six cats
AU - Cristòfol Adell, Carles
AU - Ferrer Caubet, Lluis
AU - Carrasco Rivero, Isaac
AU - Puigdemont Rodriguez, Anna-pilar
N1 - © 2019 ESVD and ACVD.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Background: Oclacitinib is a Janus kinase (JK)1 inhibitor that has been shown to be effective and safe for the treatment of allergic dermatitis in dogs. Its use in cats has been limited by the absence of pharmacokinetic data. Objective: To determine the pharmacokinetic parameters of oclacitinib in cats after oral and intravenous administration. Animals: Six adult domestic short hair cats. Methods and materials: A two period, two treatment design was used in which cats received oclacitinib maleate i.v. and p.o., at a dose of 0.5 mg/kg and 1 mg/kg, respectively. There was a one-week interval of washout between the two treatments. Cats received each treatment only once. The plasma concentration of oclacitinib was determined by high-performance liquid chromatography at 0 min, 5 min, 15 min, 30 min, 1 h, 4 h, 6 h, 10 h and 24 h after intravenous.v administration, at 0 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 10 h and 24 h after p.o. administration. Results: After p.o. administration, oclacitinib was absorbed rapidly and almost completely, as shown by an absolute bioavailability of 87% and a T
max of 35 min. The elimination of the drug also was very rapid as shown by a half-life of 2.3 h and a clearance calculated as 4.45 mL/min/kg (after i.v. administration). Conclusions and clinical importance: The pharmacokinetic parameters of oclacitinib in the cat are similar to those described for the dog, although absorption and elimination are somewhat faster and variability between individuals is somewhat greater. Larger doses and/or shorter dosing intervals would be recommended in cats to achieve similar blood concentrations to those in dogs.
AB - Background: Oclacitinib is a Janus kinase (JK)1 inhibitor that has been shown to be effective and safe for the treatment of allergic dermatitis in dogs. Its use in cats has been limited by the absence of pharmacokinetic data. Objective: To determine the pharmacokinetic parameters of oclacitinib in cats after oral and intravenous administration. Animals: Six adult domestic short hair cats. Methods and materials: A two period, two treatment design was used in which cats received oclacitinib maleate i.v. and p.o., at a dose of 0.5 mg/kg and 1 mg/kg, respectively. There was a one-week interval of washout between the two treatments. Cats received each treatment only once. The plasma concentration of oclacitinib was determined by high-performance liquid chromatography at 0 min, 5 min, 15 min, 30 min, 1 h, 4 h, 6 h, 10 h and 24 h after intravenous.v administration, at 0 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 10 h and 24 h after p.o. administration. Results: After p.o. administration, oclacitinib was absorbed rapidly and almost completely, as shown by an absolute bioavailability of 87% and a T
max of 35 min. The elimination of the drug also was very rapid as shown by a half-life of 2.3 h and a clearance calculated as 4.45 mL/min/kg (after i.v. administration). Conclusions and clinical importance: The pharmacokinetic parameters of oclacitinib in the cat are similar to those described for the dog, although absorption and elimination are somewhat faster and variability between individuals is somewhat greater. Larger doses and/or shorter dosing intervals would be recommended in cats to achieve similar blood concentrations to those in dogs.
UR - http://www.scopus.com/inward/record.url?scp=85075787931&partnerID=8YFLogxK
U2 - 10.1111/vde.12819
DO - 10.1111/vde.12819
M3 - Artículo
C2 - 31769185
SN - 1365-3164
VL - 31
SP - 134
EP - 137
JO - Veterinary dermatology (Online)
JF - Veterinary dermatology (Online)
IS - 2
ER -