TY - JOUR
T1 - A defeasible reasoning model of inductive concept learning from examples and communication
AU - Ontañón, Santiago
AU - Dellunde, Pilar
AU - Godo, Lluís
AU - Plaza, Enric
PY - 2012/12/1
Y1 - 2012/12/1
N2 - This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which hypotheses can be induced from given sets of examples, and study its properties, showing they correspond to a rather well-behaved non-monotonic logic. We will also show that with the addition of a preference relation on inductive theories we can characterize the inductive bias of ICL algorithms. The second part of the paper shows how this logical characterization of inductive generalization can be integrated with another form of non-monotonic reasoning (argumentation), to define a model of multiagent ICL. This integration allows two or more agents to learn, in a consistent way, both from induction and from arguments used in the communication between them. We show that the inductive theories achieved by multiagent induction plus argumentation are sound, i.e. they are precisely the same as the inductive theories built by a single agent with all data. © 2012 Elsevier B.V.
AB - This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which hypotheses can be induced from given sets of examples, and study its properties, showing they correspond to a rather well-behaved non-monotonic logic. We will also show that with the addition of a preference relation on inductive theories we can characterize the inductive bias of ICL algorithms. The second part of the paper shows how this logical characterization of inductive generalization can be integrated with another form of non-monotonic reasoning (argumentation), to define a model of multiagent ICL. This integration allows two or more agents to learn, in a consistent way, both from induction and from arguments used in the communication between them. We show that the inductive theories achieved by multiagent induction plus argumentation are sound, i.e. they are precisely the same as the inductive theories built by a single agent with all data. © 2012 Elsevier B.V.
KW - Argumentation
KW - Concept learning
KW - Induction
KW - Logic
KW - Machine learning
UR - https://ddd.uab.cat/record/153511
U2 - https://doi.org/10.1016/j.artint.2012.08.006
DO - https://doi.org/10.1016/j.artint.2012.08.006
M3 - Article
VL - 193
SP - 129
EP - 148
JO - Artificial Intelligence
JF - Artificial Intelligence
SN - 0004-3702
ER -