A Controller-Driven Approach for Opportunistic Networking

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Opportunistic networks (OppNets) leverage opportunistic contacts to flow data across an infrastructure-free network. As of yet, OppNets' performance depends on applying the most suitable forwarding strategy based on the OppNet typology. On the other hand, software-defined networking (SDN) is a paradigm for wired networks that decouples the control and data planes. The control plane oversees the network to configure the data plane optimally. Our proposal uses SDN-like controllers to build a partial overview of the opportunistic network. The forwarding strategy uses this context information to achieve better network performance. As a use case of our proposal, in the context of an OppNet quota-based forwarding algorithm, we present a controller-driven architecture to tackle the congestion problem. Particularly, the controller-driven architecture uses the context information on the congestion of the network to dynamically determine the message replication limit used by the forwarding algorithm. A simulation based on real and synthetic mobility traces shows that using context information provided by the controller to configure the forwarding protocol increments the delivery ratio and keeps a good latency average and a low overhead compared with the baseline forwarding protocols based on message replication. These results strengthen the benefits of using supervised context information in the forwarding strategy in OppNets.
Original languageEnglish
JournalApplied Sciences (Switzerland)
Volume12
Issue number23
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'A Controller-Driven Approach for Opportunistic Networking'. Together they form a unique fingerprint.

Cite this